“Limiting access to iron decreases infection of Atlantic salmon SHK-1 cells with bacterium Piscirickettsia salmonis”

Abstract Background Vertebrate hosts limit the availability of iron to microbial pathogens in order to nutritionally starve the invaders. The impact of iron deficiency induced by the iron chelator deferoxamine mesylate (DFO) was investigated in Atlantic salmon SHK-1 cells infected with the facultati...

Full description

Bibliographic Details
Main Authors: Díaz, Rodrigo, Troncoso, José, Jakob, Eva, Skugor, Stanko
Format: Article in Journal/Newspaper
Language:unknown
Published: figshare 2021
Subjects:
Online Access:https://dx.doi.org/10.6084/m9.figshare.c.5387594
https://springernature.figshare.com/collections/_Limiting_access_to_iron_decreases_infection_of_Atlantic_salmon_SHK-1_cells_with_bacterium_Piscirickettsia_salmonis_/5387594
id ftdatacite:10.6084/m9.figshare.c.5387594
record_format openpolar
spelling ftdatacite:10.6084/m9.figshare.c.5387594 2023-05-15T15:32:12+02:00 “Limiting access to iron decreases infection of Atlantic salmon SHK-1 cells with bacterium Piscirickettsia salmonis” Díaz, Rodrigo Troncoso, José Jakob, Eva Skugor, Stanko 2021 https://dx.doi.org/10.6084/m9.figshare.c.5387594 https://springernature.figshare.com/collections/_Limiting_access_to_iron_decreases_infection_of_Atlantic_salmon_SHK-1_cells_with_bacterium_Piscirickettsia_salmonis_/5387594 unknown figshare https://dx.doi.org/10.1186/s12917-021-02853-6 Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode cc-by-4.0 CC-BY Immunology FOS Clinical medicine Collection article 2021 ftdatacite https://doi.org/10.6084/m9.figshare.c.5387594 https://doi.org/10.1186/s12917-021-02853-6 2021-11-05T12:55:41Z Abstract Background Vertebrate hosts limit the availability of iron to microbial pathogens in order to nutritionally starve the invaders. The impact of iron deficiency induced by the iron chelator deferoxamine mesylate (DFO) was investigated in Atlantic salmon SHK-1 cells infected with the facultative intracellular bacterium Piscirickettsia salmonis. Results Effects of the DFO treatment and P. salmonis on SHK-1 cells were gaged by assessing cytopathic effects, bacterial load and activity, and gene expression profiles of eight immune biomarkers at 4- and 7-days post infection (dpi) in the control group, groups receiving single treatments (DFO or P. salmonis) and their combination. The chelator appears to be well-tolerated by host cells, while it had a negative impact on the number of bacterial cells and associated cytotoxicity. DFO alone had minor effects on gene expression of SHK-1 cells, including an early activation of IL-1β at 4 dpi. In contrast to few moderate changes induced by single treatments (either infection or chelator), most genes had highest upregulation in the infected groups receiving DFO. The mildest induction of hepcidin-1 (antimicrobial peptide precursor and regulator of iron homeostasis) was observed in cells exposed to DFO alone, followed by P. salmonis infected cells while the addition of DFO to infected cells further increased the mRNA abundance of this gene. Transcripts encoding TNF-α (immune signaling) and iNOS (immune effector) showed sustained increase at both time points in this group while cathelicidin-1 (immune effector) and IL-8 (immune signaling) were upregulated at 7 dpi. The stimulation of protective gene responses seen in infected cultures supplemented with DFO coincided with the reduction of bacterial load and activity (judged by the expression of P. salmonis 16S rRNA), and damage to cultured host cells. Conclusion The absence of immune gene activation under normal iron conditions suggests modulation of host responses by P. salmonis. The negative effect of iron deficiency on bacteria likely allowed host cells to respond in a more protective manner to the infection, further decreasing its progression. Presented findings encourage in vivo exploration of iron chelators as a promising strategy against piscirickettsiosis. Article in Journal/Newspaper Atlantic salmon DataCite Metadata Store (German National Library of Science and Technology)
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language unknown
topic Immunology
FOS Clinical medicine
spellingShingle Immunology
FOS Clinical medicine
Díaz, Rodrigo
Troncoso, José
Jakob, Eva
Skugor, Stanko
“Limiting access to iron decreases infection of Atlantic salmon SHK-1 cells with bacterium Piscirickettsia salmonis”
topic_facet Immunology
FOS Clinical medicine
description Abstract Background Vertebrate hosts limit the availability of iron to microbial pathogens in order to nutritionally starve the invaders. The impact of iron deficiency induced by the iron chelator deferoxamine mesylate (DFO) was investigated in Atlantic salmon SHK-1 cells infected with the facultative intracellular bacterium Piscirickettsia salmonis. Results Effects of the DFO treatment and P. salmonis on SHK-1 cells were gaged by assessing cytopathic effects, bacterial load and activity, and gene expression profiles of eight immune biomarkers at 4- and 7-days post infection (dpi) in the control group, groups receiving single treatments (DFO or P. salmonis) and their combination. The chelator appears to be well-tolerated by host cells, while it had a negative impact on the number of bacterial cells and associated cytotoxicity. DFO alone had minor effects on gene expression of SHK-1 cells, including an early activation of IL-1β at 4 dpi. In contrast to few moderate changes induced by single treatments (either infection or chelator), most genes had highest upregulation in the infected groups receiving DFO. The mildest induction of hepcidin-1 (antimicrobial peptide precursor and regulator of iron homeostasis) was observed in cells exposed to DFO alone, followed by P. salmonis infected cells while the addition of DFO to infected cells further increased the mRNA abundance of this gene. Transcripts encoding TNF-α (immune signaling) and iNOS (immune effector) showed sustained increase at both time points in this group while cathelicidin-1 (immune effector) and IL-8 (immune signaling) were upregulated at 7 dpi. The stimulation of protective gene responses seen in infected cultures supplemented with DFO coincided with the reduction of bacterial load and activity (judged by the expression of P. salmonis 16S rRNA), and damage to cultured host cells. Conclusion The absence of immune gene activation under normal iron conditions suggests modulation of host responses by P. salmonis. The negative effect of iron deficiency on bacteria likely allowed host cells to respond in a more protective manner to the infection, further decreasing its progression. Presented findings encourage in vivo exploration of iron chelators as a promising strategy against piscirickettsiosis.
format Article in Journal/Newspaper
author Díaz, Rodrigo
Troncoso, José
Jakob, Eva
Skugor, Stanko
author_facet Díaz, Rodrigo
Troncoso, José
Jakob, Eva
Skugor, Stanko
author_sort Díaz, Rodrigo
title “Limiting access to iron decreases infection of Atlantic salmon SHK-1 cells with bacterium Piscirickettsia salmonis”
title_short “Limiting access to iron decreases infection of Atlantic salmon SHK-1 cells with bacterium Piscirickettsia salmonis”
title_full “Limiting access to iron decreases infection of Atlantic salmon SHK-1 cells with bacterium Piscirickettsia salmonis”
title_fullStr “Limiting access to iron decreases infection of Atlantic salmon SHK-1 cells with bacterium Piscirickettsia salmonis”
title_full_unstemmed “Limiting access to iron decreases infection of Atlantic salmon SHK-1 cells with bacterium Piscirickettsia salmonis”
title_sort “limiting access to iron decreases infection of atlantic salmon shk-1 cells with bacterium piscirickettsia salmonis”
publisher figshare
publishDate 2021
url https://dx.doi.org/10.6084/m9.figshare.c.5387594
https://springernature.figshare.com/collections/_Limiting_access_to_iron_decreases_infection_of_Atlantic_salmon_SHK-1_cells_with_bacterium_Piscirickettsia_salmonis_/5387594
genre Atlantic salmon
genre_facet Atlantic salmon
op_relation https://dx.doi.org/10.1186/s12917-021-02853-6
op_rights Creative Commons Attribution 4.0 International
https://creativecommons.org/licenses/by/4.0/legalcode
cc-by-4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.6084/m9.figshare.c.5387594
https://doi.org/10.1186/s12917-021-02853-6
_version_ 1766362707074744320