Influence of the polar light cycle on seasonal dynamics of an Antarctic lake microbial community
Abstract Background Cold environments dominate the Earth’s biosphere and microbial activity drives ecosystem processes thereby contributing greatly to global biogeochemical cycles. Polar environments differ to all other cold environments by experiencing 24-h sunlight in summer and no sunlight in win...
Main Authors: | , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article in Journal/Newspaper |
Language: | unknown |
Published: |
figshare
2020
|
Subjects: | |
Online Access: | https://dx.doi.org/10.6084/m9.figshare.c.5086955.v1 https://springernature.figshare.com/collections/Influence_of_the_polar_light_cycle_on_seasonal_dynamics_of_an_Antarctic_lake_microbial_community/5086955/1 |
id |
ftdatacite:10.6084/m9.figshare.c.5086955.v1 |
---|---|
record_format |
openpolar |
spelling |
ftdatacite:10.6084/m9.figshare.c.5086955.v1 2023-05-15T13:51:37+02:00 Influence of the polar light cycle on seasonal dynamics of an Antarctic lake microbial community Panwar, Pratibha Allen, Michelle A. Williams, Timothy J. Hancock, Alyce M. Brazendale, Sarah Bevington, James Roux, Simon Páez-Espino, David Nayfach, Stephen Berg, Maureen Schulz, Frederik I-Min A. Chen Huntemann, Marcel Shapiro, Nicole Kyrpides, Nikos C. Woyke, Tanja Emiley A. Eloe-Fadrosh Cavicchioli, Ricardo 2020 https://dx.doi.org/10.6084/m9.figshare.c.5086955.v1 https://springernature.figshare.com/collections/Influence_of_the_polar_light_cycle_on_seasonal_dynamics_of_an_Antarctic_lake_microbial_community/5086955/1 unknown figshare https://dx.doi.org/10.1186/s40168-020-00889-8 https://dx.doi.org/10.6084/m9.figshare.c.5086955 Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode cc-by-4.0 CC-BY Microbiology FOS Biological sciences Ecology Collection article 2020 ftdatacite https://doi.org/10.6084/m9.figshare.c.5086955.v1 https://doi.org/10.1186/s40168-020-00889-8 https://doi.org/10.6084/m9.figshare.c.5086955 2021-11-05T12:55:41Z Abstract Background Cold environments dominate the Earth’s biosphere and microbial activity drives ecosystem processes thereby contributing greatly to global biogeochemical cycles. Polar environments differ to all other cold environments by experiencing 24-h sunlight in summer and no sunlight in winter. The Vestfold Hills in East Antarctica contains hundreds of lakes that have evolved from a marine origin only 3000–7000 years ago. Ace Lake is a meromictic (stratified) lake from this region that has been intensively studied since the 1970s. Here, a total of 120 metagenomes representing a seasonal cycle and four summers spanning a 10-year period were analyzed to determine the effects of the polar light cycle on microbial-driven nutrient cycles. Results The lake system is characterized by complex sulfur and hydrogen cycling, especially in the anoxic layers, with multiple mechanisms for the breakdown of biopolymers present throughout the water column. The two most abundant taxa are phototrophs (green sulfur bacteria and cyanobacteria) that are highly influenced by the seasonal availability of sunlight. The extent of the Chlorobium biomass thriving at the interface in summer was captured in underwater video footage. The Chlorobium abundance dropped from up to 83% in summer to 6% in winter and 1% in spring, before rebounding to high levels. Predicted Chlorobium viruses and cyanophage were also abundant, but their levels did not negatively correlate with their hosts. Conclusion Over-wintering expeditions in Antarctica are logistically challenging, meaning insight into winter processes has been inferred from limited data. Here, we found that in contrast to chemolithoautotrophic carbon fixation potential of Southern Ocean Thaumarchaeota, this marine-derived lake evolved a reliance on photosynthesis. While viruses associated with phototrophs also have high seasonal abundance, the negative impact of viral infection on host growth appeared to be limited. The microbial community as a whole appears to have developed a capacity to generate biomass and remineralize nutrients, sufficient to sustain itself between two rounds of sunlight-driven summer-activity. In addition, this unique metagenome dataset provides considerable opportunity for future interrogation of eukaryotes and their viruses, abundant uncharacterized taxa (i.e. dark matter), and for testing hypotheses about endemic species in polar aquatic ecosystems. Video Abstract Article in Journal/Newspaper Antarc* Antarctic Antarctica East Antarctica Southern Ocean DataCite Metadata Store (German National Library of Science and Technology) Antarctic Southern Ocean East Antarctica Vestfold Hills Vestfold Ace Lake ENVELOPE(78.188,78.188,-68.472,-68.472) |
institution |
Open Polar |
collection |
DataCite Metadata Store (German National Library of Science and Technology) |
op_collection_id |
ftdatacite |
language |
unknown |
topic |
Microbiology FOS Biological sciences Ecology |
spellingShingle |
Microbiology FOS Biological sciences Ecology Panwar, Pratibha Allen, Michelle A. Williams, Timothy J. Hancock, Alyce M. Brazendale, Sarah Bevington, James Roux, Simon Páez-Espino, David Nayfach, Stephen Berg, Maureen Schulz, Frederik I-Min A. Chen Huntemann, Marcel Shapiro, Nicole Kyrpides, Nikos C. Woyke, Tanja Emiley A. Eloe-Fadrosh Cavicchioli, Ricardo Influence of the polar light cycle on seasonal dynamics of an Antarctic lake microbial community |
topic_facet |
Microbiology FOS Biological sciences Ecology |
description |
Abstract Background Cold environments dominate the Earth’s biosphere and microbial activity drives ecosystem processes thereby contributing greatly to global biogeochemical cycles. Polar environments differ to all other cold environments by experiencing 24-h sunlight in summer and no sunlight in winter. The Vestfold Hills in East Antarctica contains hundreds of lakes that have evolved from a marine origin only 3000–7000 years ago. Ace Lake is a meromictic (stratified) lake from this region that has been intensively studied since the 1970s. Here, a total of 120 metagenomes representing a seasonal cycle and four summers spanning a 10-year period were analyzed to determine the effects of the polar light cycle on microbial-driven nutrient cycles. Results The lake system is characterized by complex sulfur and hydrogen cycling, especially in the anoxic layers, with multiple mechanisms for the breakdown of biopolymers present throughout the water column. The two most abundant taxa are phototrophs (green sulfur bacteria and cyanobacteria) that are highly influenced by the seasonal availability of sunlight. The extent of the Chlorobium biomass thriving at the interface in summer was captured in underwater video footage. The Chlorobium abundance dropped from up to 83% in summer to 6% in winter and 1% in spring, before rebounding to high levels. Predicted Chlorobium viruses and cyanophage were also abundant, but their levels did not negatively correlate with their hosts. Conclusion Over-wintering expeditions in Antarctica are logistically challenging, meaning insight into winter processes has been inferred from limited data. Here, we found that in contrast to chemolithoautotrophic carbon fixation potential of Southern Ocean Thaumarchaeota, this marine-derived lake evolved a reliance on photosynthesis. While viruses associated with phototrophs also have high seasonal abundance, the negative impact of viral infection on host growth appeared to be limited. The microbial community as a whole appears to have developed a capacity to generate biomass and remineralize nutrients, sufficient to sustain itself between two rounds of sunlight-driven summer-activity. In addition, this unique metagenome dataset provides considerable opportunity for future interrogation of eukaryotes and their viruses, abundant uncharacterized taxa (i.e. dark matter), and for testing hypotheses about endemic species in polar aquatic ecosystems. Video Abstract |
format |
Article in Journal/Newspaper |
author |
Panwar, Pratibha Allen, Michelle A. Williams, Timothy J. Hancock, Alyce M. Brazendale, Sarah Bevington, James Roux, Simon Páez-Espino, David Nayfach, Stephen Berg, Maureen Schulz, Frederik I-Min A. Chen Huntemann, Marcel Shapiro, Nicole Kyrpides, Nikos C. Woyke, Tanja Emiley A. Eloe-Fadrosh Cavicchioli, Ricardo |
author_facet |
Panwar, Pratibha Allen, Michelle A. Williams, Timothy J. Hancock, Alyce M. Brazendale, Sarah Bevington, James Roux, Simon Páez-Espino, David Nayfach, Stephen Berg, Maureen Schulz, Frederik I-Min A. Chen Huntemann, Marcel Shapiro, Nicole Kyrpides, Nikos C. Woyke, Tanja Emiley A. Eloe-Fadrosh Cavicchioli, Ricardo |
author_sort |
Panwar, Pratibha |
title |
Influence of the polar light cycle on seasonal dynamics of an Antarctic lake microbial community |
title_short |
Influence of the polar light cycle on seasonal dynamics of an Antarctic lake microbial community |
title_full |
Influence of the polar light cycle on seasonal dynamics of an Antarctic lake microbial community |
title_fullStr |
Influence of the polar light cycle on seasonal dynamics of an Antarctic lake microbial community |
title_full_unstemmed |
Influence of the polar light cycle on seasonal dynamics of an Antarctic lake microbial community |
title_sort |
influence of the polar light cycle on seasonal dynamics of an antarctic lake microbial community |
publisher |
figshare |
publishDate |
2020 |
url |
https://dx.doi.org/10.6084/m9.figshare.c.5086955.v1 https://springernature.figshare.com/collections/Influence_of_the_polar_light_cycle_on_seasonal_dynamics_of_an_Antarctic_lake_microbial_community/5086955/1 |
long_lat |
ENVELOPE(78.188,78.188,-68.472,-68.472) |
geographic |
Antarctic Southern Ocean East Antarctica Vestfold Hills Vestfold Ace Lake |
geographic_facet |
Antarctic Southern Ocean East Antarctica Vestfold Hills Vestfold Ace Lake |
genre |
Antarc* Antarctic Antarctica East Antarctica Southern Ocean |
genre_facet |
Antarc* Antarctic Antarctica East Antarctica Southern Ocean |
op_relation |
https://dx.doi.org/10.1186/s40168-020-00889-8 https://dx.doi.org/10.6084/m9.figshare.c.5086955 |
op_rights |
Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode cc-by-4.0 |
op_rightsnorm |
CC-BY |
op_doi |
https://doi.org/10.6084/m9.figshare.c.5086955.v1 https://doi.org/10.1186/s40168-020-00889-8 https://doi.org/10.6084/m9.figshare.c.5086955 |
_version_ |
1766255594214260736 |