Effects of climate change on zooplankton community interactions in an Alaskan lake
Abstract Background Ecological communities are organized by interactions among the biota, and between the biota and external environmental drivers that affect the dynamics of individual taxa. Climate change may alter communities in unexpected ways when environmental drivers have complex effects on i...
Main Authors: | , , |
---|---|
Format: | Article in Journal/Newspaper |
Language: | unknown |
Published: |
Figshare
2017
|
Subjects: | |
Online Access: | https://dx.doi.org/10.6084/m9.figshare.c.3798100 https://figshare.com/collections/Effects_of_climate_change_on_zooplankton_community_interactions_in_an_Alaskan_lake/3798100 |
Summary: | Abstract Background Ecological communities are organized by interactions among the biota, and between the biota and external environmental drivers that affect the dynamics of individual taxa. Climate change may alter communities in unexpected ways when environmental drivers have complex effects on individual species that are then transmitted indirectly to other species via biotic interactions. Methods We used a multivariate autoregressive (MAR) modeling framework to assess the strengths of intrinsic interactions and extrinsic (environmental) forcing responsible for changes in the zooplankton community of a sockeye salmon nursery lake in southwestern Alaska from 1963 to 2009. During this time period there has been a strong trend towards earlier spring ice breakup dates and warmer summer water temperatures. Results MAR analyses of community time-series showed that water temperature was the dominant driver of change in the zooplankton community; competitive interactions were relatively rare, and only copepods (both cyclopoids and calanoids) were affected by predation (juvenile sockeye salmon). Best-fit community models were used to develop scenarios of zooplankton community composition under several different potential climate conditions and salmon densities and revealed the potential for a shift in the dominant zooplankton taxa in this lake, driven largely by taxon-specific sensitivity to climate and sockeye salmon predation. Conclusions Simulations suggest that cladocerans will become more prevalent in this community and that calanoid copepods will suffer from ongoing climate warming. These results have important implications for fish in these northern lakes, as they suggest that the production of planktivorous fish should increase with ongoing climate change. |
---|