Landscape-scale patterns in tree occupancy and abundance in subarctic Alaska

Recent studies suggest that climate warming in interior Alaska may result in major shifts from spruce-dominated forests to broadleaf-dominated forests or even grasslands. To quantify patterns in tree distribution and abundance and to investigate the potential for changes in forest dynamics through t...

Full description

Bibliographic Details
Main Authors: Roland, Carl A., Schmidt, Joshua H., E. Fleur Nicklen
Format: Article in Journal/Newspaper
Language:unknown
Published: Figshare 2016
Subjects:
Online Access:https://dx.doi.org/10.6084/m9.figshare.c.3309741.v1
https://figshare.com/collections/Landscape-scale_patterns_in_tree_occupancy_and_abundance_in_subarctic_Alaska/3309741/1
id ftdatacite:10.6084/m9.figshare.c.3309741.v1
record_format openpolar
spelling ftdatacite:10.6084/m9.figshare.c.3309741.v1 2023-05-15T17:57:42+02:00 Landscape-scale patterns in tree occupancy and abundance in subarctic Alaska Roland, Carl A. Schmidt, Joshua H. E. Fleur Nicklen 2016 https://dx.doi.org/10.6084/m9.figshare.c.3309741.v1 https://figshare.com/collections/Landscape-scale_patterns_in_tree_occupancy_and_abundance_in_subarctic_Alaska/3309741/1 unknown Figshare https://dx.doi.org/10.1890/11-2136.1 https://dx.doi.org/10.6084/m9.figshare.c.3309741 CC-BY http://creativecommons.org/licenses/by/3.0/us CC-BY Environmental Science Ecology FOS Biological sciences Collection article 2016 ftdatacite https://doi.org/10.6084/m9.figshare.c.3309741.v1 https://doi.org/10.1890/11-2136.1 https://doi.org/10.6084/m9.figshare.c.3309741 2021-11-05T12:55:41Z Recent studies suggest that climate warming in interior Alaska may result in major shifts from spruce-dominated forests to broadleaf-dominated forests or even grasslands. To quantify patterns in tree distribution and abundance and to investigate the potential for changes in forest dynamics through time, we initiated a spatially extensive vegetation monitoring program covering 1.28 million ha in Denali National Park and Preserve (DNPP). Using a probabilistic sampling design, we collected field measurements throughout the study area to develop spatially explicit Bayesian hierarchical models of tree occupancy and abundance. These models demonstrated a strong partitioning of the landscape among the six tree species in DNPP, and allowed us to account for and examine residual spatial autocorrelation in our data. Tree distributions were governed by two primary ecological gradients: (1) the gradient from low elevation, poorly drained, permafrost-influenced sites with shallow active layers and low soil pH (dominated by Picea mariana ) to deeply thawed and more productive sites at mid-elevation with higher soil pH on mineral substrate (dominated by Picea glauca ); and (2) the gradient from older, less recently disturbed sites dominated by conifers to those recently affected by disturbance in the form of fire and flooding with increased occupancy and abundance of broadleaf species. We found that the establishment of broadleaf species was largely dependent on disturbance, and mixed forests and pure stands of broadleaf trees were relatively rare and occurred in localized areas. Contrary to recent work in nearby areas of interior Alaska, our results suggest that P. glauca distribution may actually increase in DNPP under warming conditions rather than decline as previously predicted, as P. glauca expands into areas formerly underlain by permafrost. We found no evidence of a shift to broadleaf forests in DNPP, particularly in the poorly drained basin landscape positions that may be resistant to such changes. Overall, our results indicate that probabilistic sampling conducted at a landscape scale can improve inference relative to the habitat associations driving the distribution and abundance of trees in the boreal forest and the potential effects of climate change on them. Article in Journal/Newspaper permafrost Subarctic Alaska DataCite Metadata Store (German National Library of Science and Technology)
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language unknown
topic Environmental Science
Ecology
FOS Biological sciences
spellingShingle Environmental Science
Ecology
FOS Biological sciences
Roland, Carl A.
Schmidt, Joshua H.
E. Fleur Nicklen
Landscape-scale patterns in tree occupancy and abundance in subarctic Alaska
topic_facet Environmental Science
Ecology
FOS Biological sciences
description Recent studies suggest that climate warming in interior Alaska may result in major shifts from spruce-dominated forests to broadleaf-dominated forests or even grasslands. To quantify patterns in tree distribution and abundance and to investigate the potential for changes in forest dynamics through time, we initiated a spatially extensive vegetation monitoring program covering 1.28 million ha in Denali National Park and Preserve (DNPP). Using a probabilistic sampling design, we collected field measurements throughout the study area to develop spatially explicit Bayesian hierarchical models of tree occupancy and abundance. These models demonstrated a strong partitioning of the landscape among the six tree species in DNPP, and allowed us to account for and examine residual spatial autocorrelation in our data. Tree distributions were governed by two primary ecological gradients: (1) the gradient from low elevation, poorly drained, permafrost-influenced sites with shallow active layers and low soil pH (dominated by Picea mariana ) to deeply thawed and more productive sites at mid-elevation with higher soil pH on mineral substrate (dominated by Picea glauca ); and (2) the gradient from older, less recently disturbed sites dominated by conifers to those recently affected by disturbance in the form of fire and flooding with increased occupancy and abundance of broadleaf species. We found that the establishment of broadleaf species was largely dependent on disturbance, and mixed forests and pure stands of broadleaf trees were relatively rare and occurred in localized areas. Contrary to recent work in nearby areas of interior Alaska, our results suggest that P. glauca distribution may actually increase in DNPP under warming conditions rather than decline as previously predicted, as P. glauca expands into areas formerly underlain by permafrost. We found no evidence of a shift to broadleaf forests in DNPP, particularly in the poorly drained basin landscape positions that may be resistant to such changes. Overall, our results indicate that probabilistic sampling conducted at a landscape scale can improve inference relative to the habitat associations driving the distribution and abundance of trees in the boreal forest and the potential effects of climate change on them.
format Article in Journal/Newspaper
author Roland, Carl A.
Schmidt, Joshua H.
E. Fleur Nicklen
author_facet Roland, Carl A.
Schmidt, Joshua H.
E. Fleur Nicklen
author_sort Roland, Carl A.
title Landscape-scale patterns in tree occupancy and abundance in subarctic Alaska
title_short Landscape-scale patterns in tree occupancy and abundance in subarctic Alaska
title_full Landscape-scale patterns in tree occupancy and abundance in subarctic Alaska
title_fullStr Landscape-scale patterns in tree occupancy and abundance in subarctic Alaska
title_full_unstemmed Landscape-scale patterns in tree occupancy and abundance in subarctic Alaska
title_sort landscape-scale patterns in tree occupancy and abundance in subarctic alaska
publisher Figshare
publishDate 2016
url https://dx.doi.org/10.6084/m9.figshare.c.3309741.v1
https://figshare.com/collections/Landscape-scale_patterns_in_tree_occupancy_and_abundance_in_subarctic_Alaska/3309741/1
genre permafrost
Subarctic
Alaska
genre_facet permafrost
Subarctic
Alaska
op_relation https://dx.doi.org/10.1890/11-2136.1
https://dx.doi.org/10.6084/m9.figshare.c.3309741
op_rights CC-BY
http://creativecommons.org/licenses/by/3.0/us
op_rightsnorm CC-BY
op_doi https://doi.org/10.6084/m9.figshare.c.3309741.v1
https://doi.org/10.1890/11-2136.1
https://doi.org/10.6084/m9.figshare.c.3309741
_version_ 1766166198105407488