Global contribution of echinoderms to the marine carbon cycle: CaCO 3 budget and benthic compartments

The contribution of carbonate-producing benthic organisms to the global marine carbon budget has been overlooked, the prevailing view being that calcium carbonate (CaCO 3 ) is predominantly produced and exported by marine plankton in the “biological pump.” Here, we provide the first estimation of th...

Full description

Bibliographic Details
Main Authors: Lebrato, Mario, Iglesias-Rodríguez, Debora, Feely, Richard A., Greeley, Dana, Jones, Daniel O. B., Suarez-Bosche, Nadia, Lampitt, Richard S., Cartes, Joan E., Green, Darryl R. H., Alker, Belinda
Format: Article in Journal/Newspaper
Language:unknown
Published: Figshare 2016
Subjects:
Online Access:https://dx.doi.org/10.6084/m9.figshare.c.3309558.v1
https://figshare.com/collections/Global_contribution_of_echinoderms_to_the_marine_carbon_cycle_CaCO_sub_3_sub_budget_and_benthic_compartments/3309558/1
id ftdatacite:10.6084/m9.figshare.c.3309558.v1
record_format openpolar
spelling ftdatacite:10.6084/m9.figshare.c.3309558.v1 2023-05-15T17:52:13+02:00 Global contribution of echinoderms to the marine carbon cycle: CaCO 3 budget and benthic compartments Lebrato, Mario Iglesias-Rodríguez, Debora Feely, Richard A. Greeley, Dana Jones, Daniel O. B. Suarez-Bosche, Nadia Lampitt, Richard S. Cartes, Joan E. Green, Darryl R. H. Alker, Belinda 2016 https://dx.doi.org/10.6084/m9.figshare.c.3309558.v1 https://figshare.com/collections/Global_contribution_of_echinoderms_to_the_marine_carbon_cycle_CaCO_sub_3_sub_budget_and_benthic_compartments/3309558/1 unknown Figshare https://dx.doi.org/10.1890/09-0553.1 https://dx.doi.org/10.6084/m9.figshare.c.3309558 CC-BY http://creativecommons.org/licenses/by/3.0/us CC-BY Environmental Science Ecology FOS Biological sciences Collection article 2016 ftdatacite https://doi.org/10.6084/m9.figshare.c.3309558.v1 https://doi.org/10.1890/09-0553.1 https://doi.org/10.6084/m9.figshare.c.3309558 2021-11-05T12:55:41Z The contribution of carbonate-producing benthic organisms to the global marine carbon budget has been overlooked, the prevailing view being that calcium carbonate (CaCO 3 ) is predominantly produced and exported by marine plankton in the “biological pump.” Here, we provide the first estimation of the global contribution of echinoderms to the marine inorganic and organic carbon cycle, based on organism-level measurements from species of the five echinoderm classes. Echinoderms' global CaCO 3 contribution amounts to ~0.861 Pg CaCO 3 /yr (0.102 Pg C/yr of inorganic carbon) as a production rate, and ~2.11 Pg CaCO 3 (0.25 Pg C of inorganic carbon) as a standing stock from the shelves, slopes, and abyssal depths. Echinoderm inorganic carbon production (0.102 Pg C/yr) is less than the global pelagic production (0.4–1.8 Pg C/yr) and similar to the estimates for carbonate shelves globally (0.024–0.120 Pg C/yr). Echinoderm CaCO 3 production per unit area is ~27.01 g CaCO 3 ·m −2 ·yr −1 (3.24 g C·m −2 ·yr −1 as inorganic carbon) on a global scale for all areas, with a standing stock of ~63.34 g CaCO 3 /m 2 (7.60 g C/m 2 as inorganic carbon), and ~7.97 g C/m 2 as organic carbon. The shelf production alone is 77.91 g CaCO 3 ·m −2 ·yr −1 (9.35 g C·m −2 ·yr −1 as inorganic carbon) in contrast to 2.05 g CaCO 3 ·m −2 ·yr −1 (0.24 g C·m −2 ·yr −1 as inorganic carbon) for the slope on a global scale. The biogeography of the CaCO 3 standing stocks of echinoderms showed strong latitudinal variability. More than 80% of the global CaCO 3 production from echinoderms occurs between 0 and 800 m, with the highest contribution attributed to the shelf and upper slope. We provide a global distribution of echinoderm populations in the context of global calcite saturation horizons, since undersaturated waters with respect to mineral phases are surfacing. This shallowing is a direct consequence of ocean acidification, and in some places it may reach the shelf and upper slope permanently, where the highest CaCO 3 standing stocks from echinoderms originate. These organism-level data contribute substantially to the assessment of global carbonate inventories, which at present are poorly estimated. Additionally, it is desirable to include these benthic compartments in coupled global biogeochemical models representing the “biological pump” and its feedbacks, since at present all efforts have focused on pelagic processes, dominated by coccolithophores. The omission of the benthic processes from modeling will only diminish the understanding of elemental fluxes at large scales and any future prediction of climate change scenarios. Article in Journal/Newspaper Ocean acidification DataCite Metadata Store (German National Library of Science and Technology)
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language unknown
topic Environmental Science
Ecology
FOS Biological sciences
spellingShingle Environmental Science
Ecology
FOS Biological sciences
Lebrato, Mario
Iglesias-Rodríguez, Debora
Feely, Richard A.
Greeley, Dana
Jones, Daniel O. B.
Suarez-Bosche, Nadia
Lampitt, Richard S.
Cartes, Joan E.
Green, Darryl R. H.
Alker, Belinda
Global contribution of echinoderms to the marine carbon cycle: CaCO 3 budget and benthic compartments
topic_facet Environmental Science
Ecology
FOS Biological sciences
description The contribution of carbonate-producing benthic organisms to the global marine carbon budget has been overlooked, the prevailing view being that calcium carbonate (CaCO 3 ) is predominantly produced and exported by marine plankton in the “biological pump.” Here, we provide the first estimation of the global contribution of echinoderms to the marine inorganic and organic carbon cycle, based on organism-level measurements from species of the five echinoderm classes. Echinoderms' global CaCO 3 contribution amounts to ~0.861 Pg CaCO 3 /yr (0.102 Pg C/yr of inorganic carbon) as a production rate, and ~2.11 Pg CaCO 3 (0.25 Pg C of inorganic carbon) as a standing stock from the shelves, slopes, and abyssal depths. Echinoderm inorganic carbon production (0.102 Pg C/yr) is less than the global pelagic production (0.4–1.8 Pg C/yr) and similar to the estimates for carbonate shelves globally (0.024–0.120 Pg C/yr). Echinoderm CaCO 3 production per unit area is ~27.01 g CaCO 3 ·m −2 ·yr −1 (3.24 g C·m −2 ·yr −1 as inorganic carbon) on a global scale for all areas, with a standing stock of ~63.34 g CaCO 3 /m 2 (7.60 g C/m 2 as inorganic carbon), and ~7.97 g C/m 2 as organic carbon. The shelf production alone is 77.91 g CaCO 3 ·m −2 ·yr −1 (9.35 g C·m −2 ·yr −1 as inorganic carbon) in contrast to 2.05 g CaCO 3 ·m −2 ·yr −1 (0.24 g C·m −2 ·yr −1 as inorganic carbon) for the slope on a global scale. The biogeography of the CaCO 3 standing stocks of echinoderms showed strong latitudinal variability. More than 80% of the global CaCO 3 production from echinoderms occurs between 0 and 800 m, with the highest contribution attributed to the shelf and upper slope. We provide a global distribution of echinoderm populations in the context of global calcite saturation horizons, since undersaturated waters with respect to mineral phases are surfacing. This shallowing is a direct consequence of ocean acidification, and in some places it may reach the shelf and upper slope permanently, where the highest CaCO 3 standing stocks from echinoderms originate. These organism-level data contribute substantially to the assessment of global carbonate inventories, which at present are poorly estimated. Additionally, it is desirable to include these benthic compartments in coupled global biogeochemical models representing the “biological pump” and its feedbacks, since at present all efforts have focused on pelagic processes, dominated by coccolithophores. The omission of the benthic processes from modeling will only diminish the understanding of elemental fluxes at large scales and any future prediction of climate change scenarios.
format Article in Journal/Newspaper
author Lebrato, Mario
Iglesias-Rodríguez, Debora
Feely, Richard A.
Greeley, Dana
Jones, Daniel O. B.
Suarez-Bosche, Nadia
Lampitt, Richard S.
Cartes, Joan E.
Green, Darryl R. H.
Alker, Belinda
author_facet Lebrato, Mario
Iglesias-Rodríguez, Debora
Feely, Richard A.
Greeley, Dana
Jones, Daniel O. B.
Suarez-Bosche, Nadia
Lampitt, Richard S.
Cartes, Joan E.
Green, Darryl R. H.
Alker, Belinda
author_sort Lebrato, Mario
title Global contribution of echinoderms to the marine carbon cycle: CaCO 3 budget and benthic compartments
title_short Global contribution of echinoderms to the marine carbon cycle: CaCO 3 budget and benthic compartments
title_full Global contribution of echinoderms to the marine carbon cycle: CaCO 3 budget and benthic compartments
title_fullStr Global contribution of echinoderms to the marine carbon cycle: CaCO 3 budget and benthic compartments
title_full_unstemmed Global contribution of echinoderms to the marine carbon cycle: CaCO 3 budget and benthic compartments
title_sort global contribution of echinoderms to the marine carbon cycle: caco 3 budget and benthic compartments
publisher Figshare
publishDate 2016
url https://dx.doi.org/10.6084/m9.figshare.c.3309558.v1
https://figshare.com/collections/Global_contribution_of_echinoderms_to_the_marine_carbon_cycle_CaCO_sub_3_sub_budget_and_benthic_compartments/3309558/1
genre Ocean acidification
genre_facet Ocean acidification
op_relation https://dx.doi.org/10.1890/09-0553.1
https://dx.doi.org/10.6084/m9.figshare.c.3309558
op_rights CC-BY
http://creativecommons.org/licenses/by/3.0/us
op_rightsnorm CC-BY
op_doi https://doi.org/10.6084/m9.figshare.c.3309558.v1
https://doi.org/10.1890/09-0553.1
https://doi.org/10.6084/m9.figshare.c.3309558
_version_ 1766159602197463040