CIMR compared to other PMRs: Channels and Spatial resolution

The diagram illustrates the frequency channels of the candidate Copernicus Imaging Microwave Radiometer (CIMR) mission, and their targeted spatial resolutions. CIMR is also compared to two other similar Passive Microwave Radiometers (PMR): the Japanese AMSR2 in orbit since 2012, and the MWI to fly o...

Full description

Bibliographic Details
Main Author: Lavergne, Thomas
Format: Still Image
Language:unknown
Published: figshare 2019
Subjects:
Online Access:https://dx.doi.org/10.6084/m9.figshare.7177730.v2
https://figshare.com/articles/CIMR_compared_to_other_PMRs_Channels_and_Spatial_resolution/7177730/2
id ftdatacite:10.6084/m9.figshare.7177730.v2
record_format openpolar
spelling ftdatacite:10.6084/m9.figshare.7177730.v2 2023-05-15T15:18:49+02:00 CIMR compared to other PMRs: Channels and Spatial resolution Lavergne, Thomas 2019 https://dx.doi.org/10.6084/m9.figshare.7177730.v2 https://figshare.com/articles/CIMR_compared_to_other_PMRs_Channels_and_Spatial_resolution/7177730/2 unknown figshare https://dx.doi.org/10.6084/m9.figshare.7177730 Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode cc-by-4.0 CC-BY 90905 Photogrammetry and Remote Sensing FOS Environmental engineering Oceanography FOS Earth and related environmental sciences 40602 Glaciology 40107 Meteorology Image Figure graphic ImageObject 2019 ftdatacite https://doi.org/10.6084/m9.figshare.7177730.v2 https://doi.org/10.6084/m9.figshare.7177730 2021-11-05T12:55:41Z The diagram illustrates the frequency channels of the candidate Copernicus Imaging Microwave Radiometer (CIMR) mission, and their targeted spatial resolutions. CIMR is also compared to two other similar Passive Microwave Radiometers (PMR): the Japanese AMSR2 in orbit since 2012, and the MWI to fly on-board the European EPS-SG satellites from ~2023 (MWI-SG). CIMR is a polarized multi-frequency, conically scanning PMR, under study for the Expansion phase of the EU Copernicus Space Component. It is an advanced PMR that will bring further the operational monitoring capabilities of the polar regions, including the Arctic and adjacent seas. The primary objectives of CIMR are all-weather, high-resolution, high-accuracy, sub-daily observations of sea-ice concentration (SIC), and sea-surface temperature (SST). On the left hand side, the ellipses illustrate the Instantaneous Field-Of-Views (iFOVs) at the different frequencies. Each ellipse corresponds to the footprint of a specific frequency channels, for a given instrument, and is an indication of the spatial resolution achieved. It appears clearly that CIMR aims at a much improved spatial resolution than the AMSR series, in a largely overlapping range of frequencies (C-band to Ka-band). The W-band (near 90GHz) is not selected for CIMR. L-band (~1.4GHz) on board CIMR will continue the heritage of ESA SMOS and NASA SMAP. MWI-SG lacks the lower frequency channels (L-, C- and X-band) and generally has too coarse resolution for ocean and sea-ice operational applications at the horizon 2025. On the right hand side, the discs illustrate the size of the antenna reflectors of each instrument. The bigger the antenna, the better the spatial resolution at a given frequency. Small antennas (MWI-SG, AMSR2) are solid dishes, while larger ones are meshes. The observation zenith angles (oza) theta are also reported. The larger oza of CIMR yields wider swaths, and enables coverage of the whole polar region every day (noticeably: no polar observation hole). It is underlined that the CIMR concept is under development for EU, under the lead of ESA. The values used here are realistic, but not final. For more information, see https://cimr.eu and #CIMReu on Twitter. Still Image Arctic Sea ice DataCite Metadata Store (German National Library of Science and Technology) Arctic
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language unknown
topic 90905 Photogrammetry and Remote Sensing
FOS Environmental engineering
Oceanography
FOS Earth and related environmental sciences
40602 Glaciology
40107 Meteorology
spellingShingle 90905 Photogrammetry and Remote Sensing
FOS Environmental engineering
Oceanography
FOS Earth and related environmental sciences
40602 Glaciology
40107 Meteorology
Lavergne, Thomas
CIMR compared to other PMRs: Channels and Spatial resolution
topic_facet 90905 Photogrammetry and Remote Sensing
FOS Environmental engineering
Oceanography
FOS Earth and related environmental sciences
40602 Glaciology
40107 Meteorology
description The diagram illustrates the frequency channels of the candidate Copernicus Imaging Microwave Radiometer (CIMR) mission, and their targeted spatial resolutions. CIMR is also compared to two other similar Passive Microwave Radiometers (PMR): the Japanese AMSR2 in orbit since 2012, and the MWI to fly on-board the European EPS-SG satellites from ~2023 (MWI-SG). CIMR is a polarized multi-frequency, conically scanning PMR, under study for the Expansion phase of the EU Copernicus Space Component. It is an advanced PMR that will bring further the operational monitoring capabilities of the polar regions, including the Arctic and adjacent seas. The primary objectives of CIMR are all-weather, high-resolution, high-accuracy, sub-daily observations of sea-ice concentration (SIC), and sea-surface temperature (SST). On the left hand side, the ellipses illustrate the Instantaneous Field-Of-Views (iFOVs) at the different frequencies. Each ellipse corresponds to the footprint of a specific frequency channels, for a given instrument, and is an indication of the spatial resolution achieved. It appears clearly that CIMR aims at a much improved spatial resolution than the AMSR series, in a largely overlapping range of frequencies (C-band to Ka-band). The W-band (near 90GHz) is not selected for CIMR. L-band (~1.4GHz) on board CIMR will continue the heritage of ESA SMOS and NASA SMAP. MWI-SG lacks the lower frequency channels (L-, C- and X-band) and generally has too coarse resolution for ocean and sea-ice operational applications at the horizon 2025. On the right hand side, the discs illustrate the size of the antenna reflectors of each instrument. The bigger the antenna, the better the spatial resolution at a given frequency. Small antennas (MWI-SG, AMSR2) are solid dishes, while larger ones are meshes. The observation zenith angles (oza) theta are also reported. The larger oza of CIMR yields wider swaths, and enables coverage of the whole polar region every day (noticeably: no polar observation hole). It is underlined that the CIMR concept is under development for EU, under the lead of ESA. The values used here are realistic, but not final. For more information, see https://cimr.eu and #CIMReu on Twitter.
format Still Image
author Lavergne, Thomas
author_facet Lavergne, Thomas
author_sort Lavergne, Thomas
title CIMR compared to other PMRs: Channels and Spatial resolution
title_short CIMR compared to other PMRs: Channels and Spatial resolution
title_full CIMR compared to other PMRs: Channels and Spatial resolution
title_fullStr CIMR compared to other PMRs: Channels and Spatial resolution
title_full_unstemmed CIMR compared to other PMRs: Channels and Spatial resolution
title_sort cimr compared to other pmrs: channels and spatial resolution
publisher figshare
publishDate 2019
url https://dx.doi.org/10.6084/m9.figshare.7177730.v2
https://figshare.com/articles/CIMR_compared_to_other_PMRs_Channels_and_Spatial_resolution/7177730/2
geographic Arctic
geographic_facet Arctic
genre Arctic
Sea ice
genre_facet Arctic
Sea ice
op_relation https://dx.doi.org/10.6084/m9.figshare.7177730
op_rights Creative Commons Attribution 4.0 International
https://creativecommons.org/licenses/by/4.0/legalcode
cc-by-4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.6084/m9.figshare.7177730.v2
https://doi.org/10.6084/m9.figshare.7177730
_version_ 1766348986238631936