Chapter 36 Neoproterozoic glacial record in the Mackenzie Mountains, northern Canadian Cordillera

In the Mackenzie Mountains, an arcuate foreland thrust-fold belt of Late Cretaceous–Paleocene age in the northern Canadian Cordillera, two discrete glacial–periglacial sequences of Cryogenian age (the Rapitan Group and the Stelfox Member of the Ice Brook Fm.) are separated by c. 1.0 km of non-glacia...

Full description

Bibliographic Details
Main Authors: P. F. Hoffman, G. P. Halverson
Format: Dataset
Language:unknown
Published: Geological Society of London 2016
Subjects:
Online Access:https://dx.doi.org/10.6084/m9.figshare.3452879.v1
https://figshare.com/articles/Chapter_36_Neoproterozoic_glacial_record_in_the_Mackenzie_Mountains_northern_Canadian_Cordillera/3452879/1
id ftdatacite:10.6084/m9.figshare.3452879.v1
record_format openpolar
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language unknown
topic Geology
FOS Earth and related environmental sciences
spellingShingle Geology
FOS Earth and related environmental sciences
P. F. Hoffman
G. P. Halverson
Chapter 36 Neoproterozoic glacial record in the Mackenzie Mountains, northern Canadian Cordillera
topic_facet Geology
FOS Earth and related environmental sciences
description In the Mackenzie Mountains, an arcuate foreland thrust-fold belt of Late Cretaceous–Paleocene age in the northern Canadian Cordillera, two discrete glacial–periglacial sequences of Cryogenian age (the Rapitan Group and the Stelfox Member of the Ice Brook Fm.) are separated by c. 1.0 km of non-glacial strata. The older Rapitan diamictite occurs in an amagmatic rift basin; the younger Stelfox diamictite occurs on a passive-margin continental slope. The Rapitan Group consists of three formations. The lower Mount Berg Fm. is a complex of diamictites and conglomerates of limited extent. The middle Sayunei Fm. is a thick sequence of maroon-coloured mudrocks hosting innumerable graded layers of silt- and fine-grained sandstone. It lacks wave- or traction current-generated bedforms, and is lightly sprinkled with granule aggregates (‘till pellets’) and lonestones of dolostone and rare extrabasinal granitoids. It is capped by a hematitic Fe-formation that was reworked into the disconformably overlying Shezal diamictite. The Shezal Fm. is a complex of olive-green coloured boulder diamictites with subordinate, dark-grey shales, siltstones and parallel-sided sandstones. Some of the boulders are faceted and striated, and include dolostone, quartzite, siltstone and gabbro in declining order of abundance. Diamictite terminates abruptly at the top of the Shezal Fm., which is sharply overlain by dark shales or by <52 m of fetid, dark-grey, 13 C-depleted limestone with graded bedding. The Stelfox Member is dominated by non-stratified, carbonate-clast diamictite with faceted and striated clasts, locally associated with subordinate, well-laminated shales containing till pellets and ice-rafted dropstones. It is thin or absent on the palaeocontinental shelf, but thickens seaward (southwestward) on the palaeocontinental slope. A thin clay drape separates it from a laterally continuous post-glacial ‘cap’ dolostone, which is a very pale coloured, micro- to macropeloidal dolostone with low-angle cross-laminae, giant wave ripples and local bioherms of corrugated stomatolites. In the NW, the dolostone is followed by reddish and greenish marls, followed by black shale of the Sheepbed Fm. In the SE, the dolostone is overlain by pink or grey limestones with well-developed sea-floor cements pseudomorphic after aragonite. In this area, the top of the dolostone is ferruginous and contains digitate rosettes of sea-floor barite cement, variably calcitized. The dolostone–limestone contact is perfectly conformable, and synclinal structures previously intepreted as karst features are tectonic in origin. The grand mean palaeomagnetic pole for the well-studied Franklin Large Igneous Province ( c. 718 Ma) of Arctic Laurentia, coeval with the basal Rapitan Group in the Mount Harper area, Yukon Territory, places the Mackenzie Mountains firmly in the tropics, at 18±3°N palaeolatitude, at the onset of the Rapitan glaciation. Carbon (δ 13 C), oxygen (δ 18 O) and strontium ( 87 Sr/ 86 Sr) isotopes have been measured in carbonates bracketing the Rapitan and Stelfox diamictites. Sulphur isotope data (δ 34 S) have been obtained from carbonate-associated sulphate and barite above the younger diamictite, and calcium isotope data (δ 44 Ca) from the younger carbonate itself. The results are broadly consistent with data from other areas. Iron isotope (δ 57 Fe) and cerium anomaly (Ce/Ce*) values increase systematically upwards through the Sayunei Fe-formation, supporting an interpretation that deposition occurred within a redox chemocline through which the basin floor descended as a consequence of isostatic loading by the advancing Shezal ice sheet.
format Dataset
author P. F. Hoffman
G. P. Halverson
author_facet P. F. Hoffman
G. P. Halverson
author_sort P. F. Hoffman
title Chapter 36 Neoproterozoic glacial record in the Mackenzie Mountains, northern Canadian Cordillera
title_short Chapter 36 Neoproterozoic glacial record in the Mackenzie Mountains, northern Canadian Cordillera
title_full Chapter 36 Neoproterozoic glacial record in the Mackenzie Mountains, northern Canadian Cordillera
title_fullStr Chapter 36 Neoproterozoic glacial record in the Mackenzie Mountains, northern Canadian Cordillera
title_full_unstemmed Chapter 36 Neoproterozoic glacial record in the Mackenzie Mountains, northern Canadian Cordillera
title_sort chapter 36 neoproterozoic glacial record in the mackenzie mountains, northern canadian cordillera
publisher Geological Society of London
publishDate 2016
url https://dx.doi.org/10.6084/m9.figshare.3452879.v1
https://figshare.com/articles/Chapter_36_Neoproterozoic_glacial_record_in_the_Mackenzie_Mountains_northern_Canadian_Cordillera/3452879/1
long_lat ENVELOPE(-57.050,-57.050,-84.050,-84.050)
ENVELOPE(-126.303,-126.303,62.533,62.533)
ENVELOPE(163.083,163.083,-73.867,-73.867)
geographic Arctic
Harper
Mount Berg
Mount Harper
Yukon
geographic_facet Arctic
Harper
Mount Berg
Mount Harper
Yukon
genre Arctic
Ice Sheet
Mackenzie mountains
Yukon
genre_facet Arctic
Ice Sheet
Mackenzie mountains
Yukon
op_relation https://dx.doi.org/10.1144/m36.36
https://dx.doi.org/10.6084/m9.figshare.3452879
op_rights Creative Commons Attribution 4.0 International
https://creativecommons.org/licenses/by/4.0/legalcode
cc-by-4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.6084/m9.figshare.3452879.v1
https://doi.org/10.1144/m36.36
https://doi.org/10.6084/m9.figshare.3452879
_version_ 1766350244795121664
spelling ftdatacite:10.6084/m9.figshare.3452879.v1 2023-05-15T15:20:01+02:00 Chapter 36 Neoproterozoic glacial record in the Mackenzie Mountains, northern Canadian Cordillera P. F. Hoffman G. P. Halverson 2016 https://dx.doi.org/10.6084/m9.figshare.3452879.v1 https://figshare.com/articles/Chapter_36_Neoproterozoic_glacial_record_in_the_Mackenzie_Mountains_northern_Canadian_Cordillera/3452879/1 unknown Geological Society of London https://dx.doi.org/10.1144/m36.36 https://dx.doi.org/10.6084/m9.figshare.3452879 Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode cc-by-4.0 CC-BY Geology FOS Earth and related environmental sciences dataset Dataset 2016 ftdatacite https://doi.org/10.6084/m9.figshare.3452879.v1 https://doi.org/10.1144/m36.36 https://doi.org/10.6084/m9.figshare.3452879 2021-11-05T12:55:41Z In the Mackenzie Mountains, an arcuate foreland thrust-fold belt of Late Cretaceous–Paleocene age in the northern Canadian Cordillera, two discrete glacial–periglacial sequences of Cryogenian age (the Rapitan Group and the Stelfox Member of the Ice Brook Fm.) are separated by c. 1.0 km of non-glacial strata. The older Rapitan diamictite occurs in an amagmatic rift basin; the younger Stelfox diamictite occurs on a passive-margin continental slope. The Rapitan Group consists of three formations. The lower Mount Berg Fm. is a complex of diamictites and conglomerates of limited extent. The middle Sayunei Fm. is a thick sequence of maroon-coloured mudrocks hosting innumerable graded layers of silt- and fine-grained sandstone. It lacks wave- or traction current-generated bedforms, and is lightly sprinkled with granule aggregates (‘till pellets’) and lonestones of dolostone and rare extrabasinal granitoids. It is capped by a hematitic Fe-formation that was reworked into the disconformably overlying Shezal diamictite. The Shezal Fm. is a complex of olive-green coloured boulder diamictites with subordinate, dark-grey shales, siltstones and parallel-sided sandstones. Some of the boulders are faceted and striated, and include dolostone, quartzite, siltstone and gabbro in declining order of abundance. Diamictite terminates abruptly at the top of the Shezal Fm., which is sharply overlain by dark shales or by <52 m of fetid, dark-grey, 13 C-depleted limestone with graded bedding. The Stelfox Member is dominated by non-stratified, carbonate-clast diamictite with faceted and striated clasts, locally associated with subordinate, well-laminated shales containing till pellets and ice-rafted dropstones. It is thin or absent on the palaeocontinental shelf, but thickens seaward (southwestward) on the palaeocontinental slope. A thin clay drape separates it from a laterally continuous post-glacial ‘cap’ dolostone, which is a very pale coloured, micro- to macropeloidal dolostone with low-angle cross-laminae, giant wave ripples and local bioherms of corrugated stomatolites. In the NW, the dolostone is followed by reddish and greenish marls, followed by black shale of the Sheepbed Fm. In the SE, the dolostone is overlain by pink or grey limestones with well-developed sea-floor cements pseudomorphic after aragonite. In this area, the top of the dolostone is ferruginous and contains digitate rosettes of sea-floor barite cement, variably calcitized. The dolostone–limestone contact is perfectly conformable, and synclinal structures previously intepreted as karst features are tectonic in origin. The grand mean palaeomagnetic pole for the well-studied Franklin Large Igneous Province ( c. 718 Ma) of Arctic Laurentia, coeval with the basal Rapitan Group in the Mount Harper area, Yukon Territory, places the Mackenzie Mountains firmly in the tropics, at 18±3°N palaeolatitude, at the onset of the Rapitan glaciation. Carbon (δ 13 C), oxygen (δ 18 O) and strontium ( 87 Sr/ 86 Sr) isotopes have been measured in carbonates bracketing the Rapitan and Stelfox diamictites. Sulphur isotope data (δ 34 S) have been obtained from carbonate-associated sulphate and barite above the younger diamictite, and calcium isotope data (δ 44 Ca) from the younger carbonate itself. The results are broadly consistent with data from other areas. Iron isotope (δ 57 Fe) and cerium anomaly (Ce/Ce*) values increase systematically upwards through the Sayunei Fe-formation, supporting an interpretation that deposition occurred within a redox chemocline through which the basin floor descended as a consequence of isostatic loading by the advancing Shezal ice sheet. Dataset Arctic Ice Sheet Mackenzie mountains Yukon DataCite Metadata Store (German National Library of Science and Technology) Arctic Harper ENVELOPE(-57.050,-57.050,-84.050,-84.050) Mount Berg ENVELOPE(-126.303,-126.303,62.533,62.533) Mount Harper ENVELOPE(163.083,163.083,-73.867,-73.867) Yukon