Comparison of SMOS, SMAP and In Situ Sea Surface Salinity in the Gulf of St. Lawrence ...

The Gulf of St. Lawrence (GSL) is an Eastern Canada semi-enclosed sea under the influence of the freshwater discharge from the Great Lakes – St. Lawrence River drainage basin. Studying the variability of oceanographic conditions in the GSL under a changing climate is important for ecosystem and fish...

Full description

Bibliographic Details
Main Authors: Dumas, J., Gilbert, D.
Format: Other Non-Article Part of Journal/Newspaper
Language:unknown
Published: Taylor & Francis 2023
Subjects:
Online Access:https://dx.doi.org/10.6084/m9.figshare.21764185.v2
https://tandf.figshare.com/articles/journal_contribution/Comparison_of_SMOS_SMAP_and_i_In_Situ_i_Sea_Surface_Salinity_in_the_Gulf_of_St_Lawrence/21764185/2
Description
Summary:The Gulf of St. Lawrence (GSL) is an Eastern Canada semi-enclosed sea under the influence of the freshwater discharge from the Great Lakes – St. Lawrence River drainage basin. Studying the variability of oceanographic conditions in the GSL under a changing climate is important for ecosystem and fisheries management. To supplement the available in situ sea surface salinity (SSS) measurements with satellite SSS data, this study compares all available years of Soil Moisture Ocean Salinity (SMOS) and Soil Moisture Active and Passive (SMAP) satellite SSS to in situ SSS observations. Despite the relatively cold water and proximity to land and sea ice, the satellite SSS is able to capture the interannual variability and annual cycle of SSS in the GSL, with correlations ranging from 0.80 to 0.85 in the Southern GSL, and 0.22 to 0.77 in the Northern GSL. All satellite SSS data products were able to detect the very low salinity year of 2017 in the Southern GSL. ...