Additional file 1 of Fragmented mitochondrial genomes of seal lice (family Echinophthiriidae) and gorilla louse (family Pthiridae): frequent minichromosomal splits and a host switch of lice between seals ...

Additional file 1: Supplementary Fig. 1. Secondary structure inferred with tRNA-Scan [33] from trnW1 and trnW2 gene sequences of the southern elephant seal louse, Lepidophthirus macrorhini. Supplementary Fig. 2. Conserved non-coding AT-rich motifs and GC-rich motifs among the mitochondrial minichrom...

Full description

Bibliographic Details
Main Authors: Dong, Yalun, Zhao, Min, Shao, Renfu
Format: Text
Language:unknown
Published: figshare 2022
Subjects:
Online Access:https://dx.doi.org/10.6084/m9.figshare.19565859
https://springernature.figshare.com/articles/journal_contribution/Additional_file_1_of_Fragmented_mitochondrial_genomes_of_seal_lice_family_Echinophthiriidae_and_gorilla_louse_family_Pthiridae_frequent_minichromosomal_splits_and_a_host_switch_of_lice_between_seals/19565859
id ftdatacite:10.6084/m9.figshare.19565859
record_format openpolar
spelling ftdatacite:10.6084/m9.figshare.19565859 2024-03-31T07:49:18+00:00 Additional file 1 of Fragmented mitochondrial genomes of seal lice (family Echinophthiriidae) and gorilla louse (family Pthiridae): frequent minichromosomal splits and a host switch of lice between seals ... Dong, Yalun Zhao, Min Shao, Renfu 2022 https://dx.doi.org/10.6084/m9.figshare.19565859 https://springernature.figshare.com/articles/journal_contribution/Additional_file_1_of_Fragmented_mitochondrial_genomes_of_seal_lice_family_Echinophthiriidae_and_gorilla_louse_family_Pthiridae_frequent_minichromosomal_splits_and_a_host_switch_of_lice_between_seals/19565859 unknown figshare https://dx.doi.org/10.1093/sysbio/syaa075 https://dx.doi.org/10.1111/j.1365-3113.1978.tb00120.x https://dx.doi.org/10.1093/nar/27.8.1767 https://dx.doi.org/10.1101/gr.083188.108 https://dx.doi.org/10.1093/gbe/evs088 https://dx.doi.org/10.1186/1756-3305-7-144 https://dx.doi.org/10.1093/gbe/evx007 https://dx.doi.org/10.1093/gbe/evt094 https://dx.doi.org/10.1186/1471-2164-15-751 https://dx.doi.org/10.1186/1471-2164-15-44 https://dx.doi.org/10.1016/j.ygeno.2020.09.005 https://dx.doi.org/10.1186/s12864-021-07859-w https://dx.doi.org/10.1186/s12864-015-1843-3 https://dx.doi.org/10.1111/syen.12350 https://dx.doi.org/10.1186/1741-7007-5-7 https://dx.doi.org/10.1007/s00300-015-1822-9 https://dx.doi.org/10.1007/s00436-014-4058-7 https://dx.doi.org/10.1126/science.8066445 https://dx.doi.org/10.1006/mpev.1997.0458 https://dx.doi.org/10.1080/10635159950127303 Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode cc-by-4.0 Genetics FOS Biological sciences Text Journal contribution article-journal ScholarlyArticle 2022 ftdatacite https://doi.org/10.6084/m9.figshare.1956585910.1093/sysbio/syaa07510.1111/j.1365-3113.1978.tb00120.x10.1093/nar/27.8.176710.1101/gr.083188.10810.1093/gbe/evs08810.1186/1756-3305-7-14410.1093/gbe/evx00710.1093/gbe/evt09410.1186/1471-2164-15-75110.1186/1471 2024-03-04T13:05:49Z Additional file 1: Supplementary Fig. 1. Secondary structure inferred with tRNA-Scan [33] from trnW1 and trnW2 gene sequences of the southern elephant seal louse, Lepidophthirus macrorhini. Supplementary Fig. 2. Conserved non-coding AT-rich motifs and GC-rich motifs among the mitochondrial minichromosomes of the southern elephant seal louse, Lepidophthirus macrorhini. Supplementary Fig. 3. Conserved non-coding AT-rich motifs and GC-rich motifs among the mitochondrial minichromosomes of the northern fur seal louse, Proechinophthirus fluctus. Supplementary Fig. 4. Conserved non-coding AT-rich motifs and GC-rich motifs among the mitochondrial minichromosomes of the Weddell seal louse, Antarctophthirus carlinii. Supplementary Fig. 5. Conserved non-coding AT-rich motifs and GC-rich motifs among the mitochondrial minichromosomes of the crabeater seal louse, Antarctophthirus lobodontis. Supplementary Fig. 6. Conserved non-coding GC-rich motifs among the mitochondrial minichromosomes of the Australian sea lion ... Text Antarc* Crabeater Seal Elephant Seal Southern Elephant Seal Weddell Seal Northern fur seal DataCite Metadata Store (German National Library of Science and Technology) Weddell
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language unknown
topic Genetics
FOS Biological sciences
spellingShingle Genetics
FOS Biological sciences
Dong, Yalun
Zhao, Min
Shao, Renfu
Additional file 1 of Fragmented mitochondrial genomes of seal lice (family Echinophthiriidae) and gorilla louse (family Pthiridae): frequent minichromosomal splits and a host switch of lice between seals ...
topic_facet Genetics
FOS Biological sciences
description Additional file 1: Supplementary Fig. 1. Secondary structure inferred with tRNA-Scan [33] from trnW1 and trnW2 gene sequences of the southern elephant seal louse, Lepidophthirus macrorhini. Supplementary Fig. 2. Conserved non-coding AT-rich motifs and GC-rich motifs among the mitochondrial minichromosomes of the southern elephant seal louse, Lepidophthirus macrorhini. Supplementary Fig. 3. Conserved non-coding AT-rich motifs and GC-rich motifs among the mitochondrial minichromosomes of the northern fur seal louse, Proechinophthirus fluctus. Supplementary Fig. 4. Conserved non-coding AT-rich motifs and GC-rich motifs among the mitochondrial minichromosomes of the Weddell seal louse, Antarctophthirus carlinii. Supplementary Fig. 5. Conserved non-coding AT-rich motifs and GC-rich motifs among the mitochondrial minichromosomes of the crabeater seal louse, Antarctophthirus lobodontis. Supplementary Fig. 6. Conserved non-coding GC-rich motifs among the mitochondrial minichromosomes of the Australian sea lion ...
format Text
author Dong, Yalun
Zhao, Min
Shao, Renfu
author_facet Dong, Yalun
Zhao, Min
Shao, Renfu
author_sort Dong, Yalun
title Additional file 1 of Fragmented mitochondrial genomes of seal lice (family Echinophthiriidae) and gorilla louse (family Pthiridae): frequent minichromosomal splits and a host switch of lice between seals ...
title_short Additional file 1 of Fragmented mitochondrial genomes of seal lice (family Echinophthiriidae) and gorilla louse (family Pthiridae): frequent minichromosomal splits and a host switch of lice between seals ...
title_full Additional file 1 of Fragmented mitochondrial genomes of seal lice (family Echinophthiriidae) and gorilla louse (family Pthiridae): frequent minichromosomal splits and a host switch of lice between seals ...
title_fullStr Additional file 1 of Fragmented mitochondrial genomes of seal lice (family Echinophthiriidae) and gorilla louse (family Pthiridae): frequent minichromosomal splits and a host switch of lice between seals ...
title_full_unstemmed Additional file 1 of Fragmented mitochondrial genomes of seal lice (family Echinophthiriidae) and gorilla louse (family Pthiridae): frequent minichromosomal splits and a host switch of lice between seals ...
title_sort additional file 1 of fragmented mitochondrial genomes of seal lice (family echinophthiriidae) and gorilla louse (family pthiridae): frequent minichromosomal splits and a host switch of lice between seals ...
publisher figshare
publishDate 2022
url https://dx.doi.org/10.6084/m9.figshare.19565859
https://springernature.figshare.com/articles/journal_contribution/Additional_file_1_of_Fragmented_mitochondrial_genomes_of_seal_lice_family_Echinophthiriidae_and_gorilla_louse_family_Pthiridae_frequent_minichromosomal_splits_and_a_host_switch_of_lice_between_seals/19565859
geographic Weddell
geographic_facet Weddell
genre Antarc*
Crabeater Seal
Elephant Seal
Southern Elephant Seal
Weddell Seal
Northern fur seal
genre_facet Antarc*
Crabeater Seal
Elephant Seal
Southern Elephant Seal
Weddell Seal
Northern fur seal
op_relation https://dx.doi.org/10.1093/sysbio/syaa075
https://dx.doi.org/10.1111/j.1365-3113.1978.tb00120.x
https://dx.doi.org/10.1093/nar/27.8.1767
https://dx.doi.org/10.1101/gr.083188.108
https://dx.doi.org/10.1093/gbe/evs088
https://dx.doi.org/10.1186/1756-3305-7-144
https://dx.doi.org/10.1093/gbe/evx007
https://dx.doi.org/10.1093/gbe/evt094
https://dx.doi.org/10.1186/1471-2164-15-751
https://dx.doi.org/10.1186/1471-2164-15-44
https://dx.doi.org/10.1016/j.ygeno.2020.09.005
https://dx.doi.org/10.1186/s12864-021-07859-w
https://dx.doi.org/10.1186/s12864-015-1843-3
https://dx.doi.org/10.1111/syen.12350
https://dx.doi.org/10.1186/1741-7007-5-7
https://dx.doi.org/10.1007/s00300-015-1822-9
https://dx.doi.org/10.1007/s00436-014-4058-7
https://dx.doi.org/10.1126/science.8066445
https://dx.doi.org/10.1006/mpev.1997.0458
https://dx.doi.org/10.1080/10635159950127303
op_rights Creative Commons Attribution 4.0 International
https://creativecommons.org/licenses/by/4.0/legalcode
cc-by-4.0
op_doi https://doi.org/10.6084/m9.figshare.1956585910.1093/sysbio/syaa07510.1111/j.1365-3113.1978.tb00120.x10.1093/nar/27.8.176710.1101/gr.083188.10810.1093/gbe/evs08810.1186/1756-3305-7-14410.1093/gbe/evx00710.1093/gbe/evt09410.1186/1471-2164-15-75110.1186/1471
_version_ 1795038442473652224