Additional file 3 of Potential and expression of carbohydrate utilization by marine fungi in the global ocean

Additional file 2: Figure S1. Distribution of samples and niche differentiation of genes encoding fungal CAZymes categorized by “depth” (top plots) and by “size” (lower plots). Principal coordinate analysis (PCoA) of fungal CAZyme genes present in the metagenome (left plots) and metatranscriptome (r...

Full description

Bibliographic Details
Main Authors: Baltar, Federico, Zihao Zhao, Herndl, Gerhard J.
Format: Dataset
Language:unknown
Published: figshare 2021
Subjects:
Online Access:https://dx.doi.org/10.6084/m9.figshare.14576637.v1
https://springernature.figshare.com/articles/dataset/Additional_file_3_of_Potential_and_expression_of_carbohydrate_utilization_by_marine_fungi_in_the_global_ocean/14576637/1
id ftdatacite:10.6084/m9.figshare.14576637.v1
record_format openpolar
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language unknown
topic Microbiology
FOS Biological sciences
spellingShingle Microbiology
FOS Biological sciences
Baltar, Federico
Zihao Zhao
Herndl, Gerhard J.
Additional file 3 of Potential and expression of carbohydrate utilization by marine fungi in the global ocean
topic_facet Microbiology
FOS Biological sciences
description Additional file 2: Figure S1. Distribution of samples and niche differentiation of genes encoding fungal CAZymes categorized by “depth” (top plots) and by “size” (lower plots). Principal coordinate analysis (PCoA) of fungal CAZyme genes present in the metagenome (left plots) and metatranscriptome (right plots). Micro, micro-mycobiome (0.8-5 μm); Macro, macro-mycobiome (5-2,000 μm). Figure S2. Correlation of the occurrence of the metagenome and metatranscriptome of genes encoding fungal CAZymes for the macro-mycobiome (left) and micro-mycobiome (right). P-values and R2 provided in the plots. Micro, micro-mycobiome (0.8-5 μm); Macro, macro-mycobiome (5-2,000 μm). Figure S3. Taxonomic affiliation of genes (A) and transcripts (B) encoding fungal CAZymes at the class level. Micro, micro-mycobiome (0.8-5 μm); Macro, macro-mycobiome (5-2,000 μm). Each bar represents a sample collected in each of the stations/location and depth; so that missing bars (empty white space) represents stations/locations where samples were not collected at that particular depth. SRF, surface; MXL, mixed layer; DCM, deep chlorophyll maximum; MES, mesopelagic; IO, Indian Ocean; MS, Mediterranean Sea; NAO, North Atlantic Ocean; North Pacific Ocean; SAO, South Atlantic Ocean; SO, Southern Ocean; SPO, South Pacific Ocean. Figure S4. Taxonomic affiliation of genes (A) and transcripts (B) encoding secretory fungal CAZymes at the phylum level. Micro, micro-mycobiome (0.8-5 μm); Macro, macro-mycobiome (5-2,000 μm). Each bar represents a sample collected in each of the stations/location and depth; so that missing bars (empty white space) represents stations/locations where samples were not collected at that particular depth. SRF, surface; MXL, mixed layer; DCM, deep chlorophyll maximum; MES, mesopelagic; IO, Indian Ocean; MS, Mediterranean Sea; NAO, North Atlantic Ocean; North Pacific Ocean; SAO, South Atlantic Ocean; SO, Southern Ocean; SPO, South Pacific Ocean. Figure S5. Taxonomic affiliation of genes (A) and transcripts (B) encoding secretory fungal CAZymes at the class level. Micro, micro-mycobiome (0.8-5 μm); Macro, macro-mycobiome (5-2,000 μm). Each bar represents a sample collected in each of the stations/location and depth; so that missing bars (empty white space) represents stations/locations where samples were not collected at that particular depth. SRF, surface; MXL, mixed layer; DCM, deep chlorophyll maximum; MES, mesopelagic; IO, Indian Ocean; MS, Mediterranean Sea; NAO, North Atlantic Ocean; North Pacific Ocean; SAO, South Atlantic Ocean; SO, Southern Ocean; SPO, South Pacific Ocean. Figure S6. Functional classification of genes (A) and transcripts (B) encoding secretory fungal CAZymes. Micro, micro-mycobiome (0.8-5 μm); Macro, macro-mycobiome (5-2,000 μm). Each bar represents a sample collected in each of the stations/location and depth; so that missing bars (empty white space) represents stations/locations where samples were not collected at that particular depth. SRF, surface; MXL, mixed layer; DCM, deep chlorophyll maximum; MES, mesopelagic; IO, Indian Ocean; MS, Mediterranean Sea; NAO, North Atlantic Ocean; North Pacific Ocean; SAO, South Atlantic Ocean; SO, Southern Ocean; SPO, South Pacific Ocean. Figure S7. Occurrence of genes and transcripts for fungal CAZymes targeting different carbohydrate sources. Micro, micro-mycobiome (0.8-5 μm); Macro, macro-mycobiome (5-2,000 μm). Box shows median and interquartile range (IQR); whiskers show 1.5 × IQR of the lower and upper quartiles or range; outliers extend to the data range. Statistics are based on a Wilcoxon test, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001, ns, not significant. SRF, surface; MXL, mixed layer; DCM, deep chlorophyll maximum; MES, mesopelagic. Note that carbohydrates originating from bacterial (peptidoglycan) detritus were not plotted because they were not found in the metagenome or metatranscriptomes of pelagic fungi. Figure S8. Occurrence of genes and transcripts for secretory fungal CAZymes targeting different carbohydrate sources. Micro, micro-mycobiome (0.8-5 μm); Macro, macro-mycobiome (5-2000 μm). Box shows median and interquartile range (IQR); whiskers show 1.5 × IQR of the lower and upper quartiles or range; outliers extend to the data range. Statistics are based on Wilcoxon test, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001, ns, not significant. SRF, surface; MXL, mixed layer; DCM, deep chlorophyll maximum; MES, mesopelagic.
format Dataset
author Baltar, Federico
Zihao Zhao
Herndl, Gerhard J.
author_facet Baltar, Federico
Zihao Zhao
Herndl, Gerhard J.
author_sort Baltar, Federico
title Additional file 3 of Potential and expression of carbohydrate utilization by marine fungi in the global ocean
title_short Additional file 3 of Potential and expression of carbohydrate utilization by marine fungi in the global ocean
title_full Additional file 3 of Potential and expression of carbohydrate utilization by marine fungi in the global ocean
title_fullStr Additional file 3 of Potential and expression of carbohydrate utilization by marine fungi in the global ocean
title_full_unstemmed Additional file 3 of Potential and expression of carbohydrate utilization by marine fungi in the global ocean
title_sort additional file 3 of potential and expression of carbohydrate utilization by marine fungi in the global ocean
publisher figshare
publishDate 2021
url https://dx.doi.org/10.6084/m9.figshare.14576637.v1
https://springernature.figshare.com/articles/dataset/Additional_file_3_of_Potential_and_expression_of_carbohydrate_utilization_by_marine_fungi_in_the_global_ocean/14576637/1
geographic Southern Ocean
Pacific
Indian
geographic_facet Southern Ocean
Pacific
Indian
genre North Atlantic
South Atlantic Ocean
Southern Ocean
genre_facet North Atlantic
South Atlantic Ocean
Southern Ocean
op_relation https://dx.doi.org/10.1186/s40168-021-01063-4
https://dx.doi.org/10.6084/m9.figshare.14576637
op_rights Creative Commons Attribution 4.0 International
https://creativecommons.org/licenses/by/4.0/legalcode
cc-by-4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.6084/m9.figshare.14576637.v1
https://doi.org/10.1186/s40168-021-01063-4
https://doi.org/10.6084/m9.figshare.14576637
_version_ 1766130120834154496
spelling ftdatacite:10.6084/m9.figshare.14576637.v1 2023-05-15T17:32:09+02:00 Additional file 3 of Potential and expression of carbohydrate utilization by marine fungi in the global ocean Baltar, Federico Zihao Zhao Herndl, Gerhard J. 2021 https://dx.doi.org/10.6084/m9.figshare.14576637.v1 https://springernature.figshare.com/articles/dataset/Additional_file_3_of_Potential_and_expression_of_carbohydrate_utilization_by_marine_fungi_in_the_global_ocean/14576637/1 unknown figshare https://dx.doi.org/10.1186/s40168-021-01063-4 https://dx.doi.org/10.6084/m9.figshare.14576637 Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode cc-by-4.0 CC-BY Microbiology FOS Biological sciences dataset Dataset 2021 ftdatacite https://doi.org/10.6084/m9.figshare.14576637.v1 https://doi.org/10.1186/s40168-021-01063-4 https://doi.org/10.6084/m9.figshare.14576637 2021-11-05T12:55:41Z Additional file 2: Figure S1. Distribution of samples and niche differentiation of genes encoding fungal CAZymes categorized by “depth” (top plots) and by “size” (lower plots). Principal coordinate analysis (PCoA) of fungal CAZyme genes present in the metagenome (left plots) and metatranscriptome (right plots). Micro, micro-mycobiome (0.8-5 μm); Macro, macro-mycobiome (5-2,000 μm). Figure S2. Correlation of the occurrence of the metagenome and metatranscriptome of genes encoding fungal CAZymes for the macro-mycobiome (left) and micro-mycobiome (right). P-values and R2 provided in the plots. Micro, micro-mycobiome (0.8-5 μm); Macro, macro-mycobiome (5-2,000 μm). Figure S3. Taxonomic affiliation of genes (A) and transcripts (B) encoding fungal CAZymes at the class level. Micro, micro-mycobiome (0.8-5 μm); Macro, macro-mycobiome (5-2,000 μm). Each bar represents a sample collected in each of the stations/location and depth; so that missing bars (empty white space) represents stations/locations where samples were not collected at that particular depth. SRF, surface; MXL, mixed layer; DCM, deep chlorophyll maximum; MES, mesopelagic; IO, Indian Ocean; MS, Mediterranean Sea; NAO, North Atlantic Ocean; North Pacific Ocean; SAO, South Atlantic Ocean; SO, Southern Ocean; SPO, South Pacific Ocean. Figure S4. Taxonomic affiliation of genes (A) and transcripts (B) encoding secretory fungal CAZymes at the phylum level. Micro, micro-mycobiome (0.8-5 μm); Macro, macro-mycobiome (5-2,000 μm). Each bar represents a sample collected in each of the stations/location and depth; so that missing bars (empty white space) represents stations/locations where samples were not collected at that particular depth. SRF, surface; MXL, mixed layer; DCM, deep chlorophyll maximum; MES, mesopelagic; IO, Indian Ocean; MS, Mediterranean Sea; NAO, North Atlantic Ocean; North Pacific Ocean; SAO, South Atlantic Ocean; SO, Southern Ocean; SPO, South Pacific Ocean. Figure S5. Taxonomic affiliation of genes (A) and transcripts (B) encoding secretory fungal CAZymes at the class level. Micro, micro-mycobiome (0.8-5 μm); Macro, macro-mycobiome (5-2,000 μm). Each bar represents a sample collected in each of the stations/location and depth; so that missing bars (empty white space) represents stations/locations where samples were not collected at that particular depth. SRF, surface; MXL, mixed layer; DCM, deep chlorophyll maximum; MES, mesopelagic; IO, Indian Ocean; MS, Mediterranean Sea; NAO, North Atlantic Ocean; North Pacific Ocean; SAO, South Atlantic Ocean; SO, Southern Ocean; SPO, South Pacific Ocean. Figure S6. Functional classification of genes (A) and transcripts (B) encoding secretory fungal CAZymes. Micro, micro-mycobiome (0.8-5 μm); Macro, macro-mycobiome (5-2,000 μm). Each bar represents a sample collected in each of the stations/location and depth; so that missing bars (empty white space) represents stations/locations where samples were not collected at that particular depth. SRF, surface; MXL, mixed layer; DCM, deep chlorophyll maximum; MES, mesopelagic; IO, Indian Ocean; MS, Mediterranean Sea; NAO, North Atlantic Ocean; North Pacific Ocean; SAO, South Atlantic Ocean; SO, Southern Ocean; SPO, South Pacific Ocean. Figure S7. Occurrence of genes and transcripts for fungal CAZymes targeting different carbohydrate sources. Micro, micro-mycobiome (0.8-5 μm); Macro, macro-mycobiome (5-2,000 μm). Box shows median and interquartile range (IQR); whiskers show 1.5 × IQR of the lower and upper quartiles or range; outliers extend to the data range. Statistics are based on a Wilcoxon test, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001, ns, not significant. SRF, surface; MXL, mixed layer; DCM, deep chlorophyll maximum; MES, mesopelagic. Note that carbohydrates originating from bacterial (peptidoglycan) detritus were not plotted because they were not found in the metagenome or metatranscriptomes of pelagic fungi. Figure S8. Occurrence of genes and transcripts for secretory fungal CAZymes targeting different carbohydrate sources. Micro, micro-mycobiome (0.8-5 μm); Macro, macro-mycobiome (5-2000 μm). Box shows median and interquartile range (IQR); whiskers show 1.5 × IQR of the lower and upper quartiles or range; outliers extend to the data range. Statistics are based on Wilcoxon test, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001, ns, not significant. SRF, surface; MXL, mixed layer; DCM, deep chlorophyll maximum; MES, mesopelagic. Dataset North Atlantic South Atlantic Ocean Southern Ocean DataCite Metadata Store (German National Library of Science and Technology) Southern Ocean Pacific Indian