The simulated NEE flux (kg C m −2 yr −1 ) (uptake: negative; release: positive) ...

Figure 3. The simulated NEE flux (kg C m −2 yr −1 ) (uptake: negative; release: positive). (a) The inter-annual variations of the NEE flux (above) and the 2 m air temperature (below) in the CRU-forced run and the RCAO-forced run. (b) The change of the NEE flux between the recent and the future perio...

Full description

Bibliographic Details
Main Authors: Zhang, Wenxin, Paul A Miller, Benjamin Smith, Rita Wania, Torben Koenigk, Döscher, Ralf
Format: Still Image
Language:unknown
Published: IOP Publishing 2013
Subjects:
Online Access:https://dx.doi.org/10.6084/m9.figshare.1011561
https://iop.figshare.com/articles/figure/_The_simulated_NEE_flux_kg_C_m_sup_2_sup_yr_sup_1_sup_uptake_negative_release_positive_/1011561
Description
Summary:Figure 3. The simulated NEE flux (kg C m −2 yr −1 ) (uptake: negative; release: positive). (a) The inter-annual variations of the NEE flux (above) and the 2 m air temperature (below) in the CRU-forced run and the RCAO-forced run. (b) The change of the NEE flux between the recent and the future periods in the RCAO-forced run. Note: 1 kg C m −2 corresponds to 17.9 Gt C in this domain. Abstract One major challenge to the improvement of regional climate scenarios for the northern high latitudes is to understand land surface feedbacks associated with vegetation shifts and ecosystem biogeochemical cycling. We employed a customized, Arctic version of the individual-based dynamic vegetation model LPJ-GUESS to simulate the dynamics of upland and wetland ecosystems under a regional climate model–downscaled future climate projection for the Arctic and Subarctic. The simulated vegetation distribution (1961–1990) agreed well with a composite map of actual arctic vegetation. In the future (2051–2080), a poleward advance ...