The Dynamics of Rapid Adaptation to Ocean Acidification in the Mediterranean Mussel

Global climate change has intensified the need to assess if, and how, natural populations adapt to abrupt shifts in their environment. The tempo of adaptation in natural systems has been the subject of theoretical and empirical investigation for decades. Recent evidence from genome-wide sequencing a...

Full description

Bibliographic Details
Main Author: Bitter, Mark Christopher
Format: Thesis
Language:English
Published: The University of Chicago 2020
Subjects:
Online Access:https://dx.doi.org/10.6082/uchicago.2600
https://knowledge.uchicago.edu/record/2600
id ftdatacite:10.6082/uchicago.2600
record_format openpolar
spelling ftdatacite:10.6082/uchicago.2600 2023-05-15T17:52:11+02:00 The Dynamics of Rapid Adaptation to Ocean Acidification in the Mediterranean Mussel Bitter, Mark Christopher 2020 https://dx.doi.org/10.6082/uchicago.2600 https://knowledge.uchicago.edu/record/2600 en eng The University of Chicago Ecology FOS Biological sciences Evolution & development Thesis Text Dissertation thesis 2020 ftdatacite https://doi.org/10.6082/uchicago.2600 2021-11-05T12:55:41Z Global climate change has intensified the need to assess if, and how, natural populations adapt to abrupt shifts in their environment. The tempo of adaptation in natural systems has been the subject of theoretical and empirical investigation for decades. Recent evidence from genome-wide sequencing approaches has indicated that evolution may proceed at a pace previously deemed theoretically impossible. Such studies, however, have largely observed these processes in the context of model systems, and the extent to which these patterns will hold in ecologically-relevant species subject to the dramatic environmental perturbations associated with global change is unclear. Accordingly, this thesis investigates the capacity for, and mechanisms by which, the Mediterranean mussel, Mytilus galloprovincialis, may rapidly adapt to expected declines in global seawater pH. Reductions in seawater pH constitute a global change stressor impacting marine species globally, with anticipated impacts altering the structure and services of numerous ecological communities. Due to its experimental tractability, as well as its ecological and economic importance, M. galloprovincialis has become a model-species for exploring the physiological and morphological impacts of low pH seawater. Yet, the extent to which evolution may offset observed phenotypic consequences is unknown. To address this knowledge gap the present thesis explores the following: (i) the processes shaping and maintaining variation in low pH tolerance across the species’ native range; (ii) the extent to which the standing variation within natural populations of M. galloprovincialis can facilitate the magnitude of evolution necessary for persistence under global change conditions; and (iii) the molecular basis of low pH adaptation in marine bivalves and beyond. My results elucidate how contemporary gradients in pH variability shape distinct patterns of low pH plasticity across natural populations. Furthermore, my findings demonstrate that the standing variation within natural populations is sufficient for rapid adaptation to even extreme reductions in seawater pH. Lastly, I provide mechanistic links between the molecular mechanisms influenced by shifts in the external seawater pH environment and fitness-related abnormalities observed in M. galloprovincialis, a finding that likely explains observed low pH sensitivity across a broad range of marine metazoans. This thesis thus lends to our conceptual understanding regarding the dynamics of rapid adaptation in natural populations, while explicitly informing the management of an ecologically and economically important marine species as global change progresses. Thesis Ocean acidification DataCite Metadata Store (German National Library of Science and Technology)
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language English
topic Ecology
FOS Biological sciences
Evolution & development
spellingShingle Ecology
FOS Biological sciences
Evolution & development
Bitter, Mark Christopher
The Dynamics of Rapid Adaptation to Ocean Acidification in the Mediterranean Mussel
topic_facet Ecology
FOS Biological sciences
Evolution & development
description Global climate change has intensified the need to assess if, and how, natural populations adapt to abrupt shifts in their environment. The tempo of adaptation in natural systems has been the subject of theoretical and empirical investigation for decades. Recent evidence from genome-wide sequencing approaches has indicated that evolution may proceed at a pace previously deemed theoretically impossible. Such studies, however, have largely observed these processes in the context of model systems, and the extent to which these patterns will hold in ecologically-relevant species subject to the dramatic environmental perturbations associated with global change is unclear. Accordingly, this thesis investigates the capacity for, and mechanisms by which, the Mediterranean mussel, Mytilus galloprovincialis, may rapidly adapt to expected declines in global seawater pH. Reductions in seawater pH constitute a global change stressor impacting marine species globally, with anticipated impacts altering the structure and services of numerous ecological communities. Due to its experimental tractability, as well as its ecological and economic importance, M. galloprovincialis has become a model-species for exploring the physiological and morphological impacts of low pH seawater. Yet, the extent to which evolution may offset observed phenotypic consequences is unknown. To address this knowledge gap the present thesis explores the following: (i) the processes shaping and maintaining variation in low pH tolerance across the species’ native range; (ii) the extent to which the standing variation within natural populations of M. galloprovincialis can facilitate the magnitude of evolution necessary for persistence under global change conditions; and (iii) the molecular basis of low pH adaptation in marine bivalves and beyond. My results elucidate how contemporary gradients in pH variability shape distinct patterns of low pH plasticity across natural populations. Furthermore, my findings demonstrate that the standing variation within natural populations is sufficient for rapid adaptation to even extreme reductions in seawater pH. Lastly, I provide mechanistic links between the molecular mechanisms influenced by shifts in the external seawater pH environment and fitness-related abnormalities observed in M. galloprovincialis, a finding that likely explains observed low pH sensitivity across a broad range of marine metazoans. This thesis thus lends to our conceptual understanding regarding the dynamics of rapid adaptation in natural populations, while explicitly informing the management of an ecologically and economically important marine species as global change progresses.
format Thesis
author Bitter, Mark Christopher
author_facet Bitter, Mark Christopher
author_sort Bitter, Mark Christopher
title The Dynamics of Rapid Adaptation to Ocean Acidification in the Mediterranean Mussel
title_short The Dynamics of Rapid Adaptation to Ocean Acidification in the Mediterranean Mussel
title_full The Dynamics of Rapid Adaptation to Ocean Acidification in the Mediterranean Mussel
title_fullStr The Dynamics of Rapid Adaptation to Ocean Acidification in the Mediterranean Mussel
title_full_unstemmed The Dynamics of Rapid Adaptation to Ocean Acidification in the Mediterranean Mussel
title_sort dynamics of rapid adaptation to ocean acidification in the mediterranean mussel
publisher The University of Chicago
publishDate 2020
url https://dx.doi.org/10.6082/uchicago.2600
https://knowledge.uchicago.edu/record/2600
genre Ocean acidification
genre_facet Ocean acidification
op_doi https://doi.org/10.6082/uchicago.2600
_version_ 1766159549142663168