cG-SchNet ...
Configurations from a cG-SchNet trained on a subset of the QM9dataset. Model was trained with the intention of providing molecules withspecified functional groups or motifs, relying on sampling of molecularfingerprint data. Relaxation data for the generated molecules is computedusing ORCA software....
Main Authors: | , , , , |
---|---|
Format: | Dataset |
Language: | English |
Published: |
ColabFit
2023
|
Subjects: | |
Online Access: | https://dx.doi.org/10.60732/de8af6a2 https://materials.colabfit.org/id/DS_xzaglubh0trq_0 |
id |
ftdatacite:10.60732/de8af6a2 |
---|---|
record_format |
openpolar |
spelling |
ftdatacite:10.60732/de8af6a2 2024-04-28T08:35:15+00:00 cG-SchNet ... Gebauer, Niklas W.A. Gastegger, Michael Hessmann, Stefaan S.P. Klaus-Robert Müller Schütt, Kristof T. 2023 chemical/x-xyz https://dx.doi.org/10.60732/de8af6a2 https://materials.colabfit.org/id/DS_xzaglubh0trq_0 en eng ColabFit https://doi.org/10.1038/s41467-022-28526-y https://github.com/atomistic-machine-learning/cG-SchNet/ MIT License https://opensource.org/licenses/MIT mit ColabFit Dataset AgPd_NPJ_2021 Materials Science https//id.loc.gov/authorities/subjects/sh85082094.html Machine Learning https//id.loc.gov/authorities/subjects/sh85079324.html Techniques/Computational Techniques/First-principles calculations Techniques/Computational Techniques/Machine Learning Techniques/Computational Techniques/Molecular Dynamics Research Areas/Atomic & molecular structure/Potential energy surfaces Research Areas/Electronic structure/Interatomic & molecular potentials dataset ColabFit Dataset Dataset 2023 ftdatacite https://doi.org/10.60732/de8af6a2 2024-04-02T12:53:40Z Configurations from a cG-SchNet trained on a subset of the QM9dataset. Model was trained with the intention of providing molecules withspecified functional groups or motifs, relying on sampling of molecularfingerprint data. Relaxation data for the generated molecules is computedusing ORCA software. Configuration sets include raw data fromcG-SchNet-generated configurations, with models trained on several differenttypes of target data and DFT relaxation data as a separate configurationset. Includes approximately 80,000 configurations. ... Dataset Orca DataCite Metadata Store (German National Library of Science and Technology) |
institution |
Open Polar |
collection |
DataCite Metadata Store (German National Library of Science and Technology) |
op_collection_id |
ftdatacite |
language |
English |
topic |
ColabFit Dataset AgPd_NPJ_2021 Materials Science https//id.loc.gov/authorities/subjects/sh85082094.html Machine Learning https//id.loc.gov/authorities/subjects/sh85079324.html Techniques/Computational Techniques/First-principles calculations Techniques/Computational Techniques/Machine Learning Techniques/Computational Techniques/Molecular Dynamics Research Areas/Atomic & molecular structure/Potential energy surfaces Research Areas/Electronic structure/Interatomic & molecular potentials |
spellingShingle |
ColabFit Dataset AgPd_NPJ_2021 Materials Science https//id.loc.gov/authorities/subjects/sh85082094.html Machine Learning https//id.loc.gov/authorities/subjects/sh85079324.html Techniques/Computational Techniques/First-principles calculations Techniques/Computational Techniques/Machine Learning Techniques/Computational Techniques/Molecular Dynamics Research Areas/Atomic & molecular structure/Potential energy surfaces Research Areas/Electronic structure/Interatomic & molecular potentials Gebauer, Niklas W.A. Gastegger, Michael Hessmann, Stefaan S.P. Klaus-Robert Müller Schütt, Kristof T. cG-SchNet ... |
topic_facet |
ColabFit Dataset AgPd_NPJ_2021 Materials Science https//id.loc.gov/authorities/subjects/sh85082094.html Machine Learning https//id.loc.gov/authorities/subjects/sh85079324.html Techniques/Computational Techniques/First-principles calculations Techniques/Computational Techniques/Machine Learning Techniques/Computational Techniques/Molecular Dynamics Research Areas/Atomic & molecular structure/Potential energy surfaces Research Areas/Electronic structure/Interatomic & molecular potentials |
description |
Configurations from a cG-SchNet trained on a subset of the QM9dataset. Model was trained with the intention of providing molecules withspecified functional groups or motifs, relying on sampling of molecularfingerprint data. Relaxation data for the generated molecules is computedusing ORCA software. Configuration sets include raw data fromcG-SchNet-generated configurations, with models trained on several differenttypes of target data and DFT relaxation data as a separate configurationset. Includes approximately 80,000 configurations. ... |
format |
Dataset |
author |
Gebauer, Niklas W.A. Gastegger, Michael Hessmann, Stefaan S.P. Klaus-Robert Müller Schütt, Kristof T. |
author_facet |
Gebauer, Niklas W.A. Gastegger, Michael Hessmann, Stefaan S.P. Klaus-Robert Müller Schütt, Kristof T. |
author_sort |
Gebauer, Niklas W.A. |
title |
cG-SchNet ... |
title_short |
cG-SchNet ... |
title_full |
cG-SchNet ... |
title_fullStr |
cG-SchNet ... |
title_full_unstemmed |
cG-SchNet ... |
title_sort |
cg-schnet ... |
publisher |
ColabFit |
publishDate |
2023 |
url |
https://dx.doi.org/10.60732/de8af6a2 https://materials.colabfit.org/id/DS_xzaglubh0trq_0 |
genre |
Orca |
genre_facet |
Orca |
op_relation |
https://doi.org/10.1038/s41467-022-28526-y https://github.com/atomistic-machine-learning/cG-SchNet/ |
op_rights |
MIT License https://opensource.org/licenses/MIT mit |
op_doi |
https://doi.org/10.60732/de8af6a2 |
_version_ |
1797567402420994048 |