id ftdatacite:10.60732/de8af6a2
record_format openpolar
spelling ftdatacite:10.60732/de8af6a2 2024-04-28T08:35:15+00:00 cG-SchNet ... Gebauer, Niklas W.A. Gastegger, Michael Hessmann, Stefaan S.P. Klaus-Robert Müller Schütt, Kristof T. 2023 chemical/x-xyz https://dx.doi.org/10.60732/de8af6a2 https://materials.colabfit.org/id/DS_xzaglubh0trq_0 en eng ColabFit https://doi.org/10.1038/s41467-022-28526-y https://github.com/atomistic-machine-learning/cG-SchNet/ MIT License https://opensource.org/licenses/MIT mit ColabFit Dataset AgPd_NPJ_2021 Materials Science https//id.loc.gov/authorities/subjects/sh85082094.html Machine Learning https//id.loc.gov/authorities/subjects/sh85079324.html Techniques/Computational Techniques/First-principles calculations Techniques/Computational Techniques/Machine Learning Techniques/Computational Techniques/Molecular Dynamics Research Areas/Atomic & molecular structure/Potential energy surfaces Research Areas/Electronic structure/Interatomic & molecular potentials dataset ColabFit Dataset Dataset 2023 ftdatacite https://doi.org/10.60732/de8af6a2 2024-04-02T12:53:40Z Configurations from a cG-SchNet trained on a subset of the QM9dataset. Model was trained with the intention of providing molecules withspecified functional groups or motifs, relying on sampling of molecularfingerprint data. Relaxation data for the generated molecules is computedusing ORCA software. Configuration sets include raw data fromcG-SchNet-generated configurations, with models trained on several differenttypes of target data and DFT relaxation data as a separate configurationset. Includes approximately 80,000 configurations. ... Dataset Orca DataCite Metadata Store (German National Library of Science and Technology)
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language English
topic ColabFit
Dataset
AgPd_NPJ_2021
Materials Science
https//id.loc.gov/authorities/subjects/sh85082094.html
Machine Learning
https//id.loc.gov/authorities/subjects/sh85079324.html
Techniques/Computational Techniques/First-principles calculations
Techniques/Computational Techniques/Machine Learning
Techniques/Computational Techniques/Molecular Dynamics
Research Areas/Atomic & molecular structure/Potential energy surfaces
Research Areas/Electronic structure/Interatomic & molecular potentials
spellingShingle ColabFit
Dataset
AgPd_NPJ_2021
Materials Science
https//id.loc.gov/authorities/subjects/sh85082094.html
Machine Learning
https//id.loc.gov/authorities/subjects/sh85079324.html
Techniques/Computational Techniques/First-principles calculations
Techniques/Computational Techniques/Machine Learning
Techniques/Computational Techniques/Molecular Dynamics
Research Areas/Atomic & molecular structure/Potential energy surfaces
Research Areas/Electronic structure/Interatomic & molecular potentials
Gebauer, Niklas W.A.
Gastegger, Michael
Hessmann, Stefaan S.P.
Klaus-Robert Müller
Schütt, Kristof T.
cG-SchNet ...
topic_facet ColabFit
Dataset
AgPd_NPJ_2021
Materials Science
https//id.loc.gov/authorities/subjects/sh85082094.html
Machine Learning
https//id.loc.gov/authorities/subjects/sh85079324.html
Techniques/Computational Techniques/First-principles calculations
Techniques/Computational Techniques/Machine Learning
Techniques/Computational Techniques/Molecular Dynamics
Research Areas/Atomic & molecular structure/Potential energy surfaces
Research Areas/Electronic structure/Interatomic & molecular potentials
description Configurations from a cG-SchNet trained on a subset of the QM9dataset. Model was trained with the intention of providing molecules withspecified functional groups or motifs, relying on sampling of molecularfingerprint data. Relaxation data for the generated molecules is computedusing ORCA software. Configuration sets include raw data fromcG-SchNet-generated configurations, with models trained on several differenttypes of target data and DFT relaxation data as a separate configurationset. Includes approximately 80,000 configurations. ...
format Dataset
author Gebauer, Niklas W.A.
Gastegger, Michael
Hessmann, Stefaan S.P.
Klaus-Robert Müller
Schütt, Kristof T.
author_facet Gebauer, Niklas W.A.
Gastegger, Michael
Hessmann, Stefaan S.P.
Klaus-Robert Müller
Schütt, Kristof T.
author_sort Gebauer, Niklas W.A.
title cG-SchNet ...
title_short cG-SchNet ...
title_full cG-SchNet ...
title_fullStr cG-SchNet ...
title_full_unstemmed cG-SchNet ...
title_sort cg-schnet ...
publisher ColabFit
publishDate 2023
url https://dx.doi.org/10.60732/de8af6a2
https://materials.colabfit.org/id/DS_xzaglubh0trq_0
genre Orca
genre_facet Orca
op_relation https://doi.org/10.1038/s41467-022-28526-y
https://github.com/atomistic-machine-learning/cG-SchNet/
op_rights MIT License
https://opensource.org/licenses/MIT
mit
op_doi https://doi.org/10.60732/de8af6a2
_version_ 1797567402420994048