Shear stress along active megathrusts and force balance solutions

The data are the source data for Figures 2, 3, and 4 in the paper "Megathrust shear force controls mountain height at convergent plate margins" by Dielforder, Hetzel, and Oncken (2020). Details on the calculation of the data are given in the methods section of this paper. The archive "...

Full description

Bibliographic Details
Main Authors: Dielforder, Armin, Hetzel, Ralf, Oncken, Onno
Format: Dataset
Language:English
Published: GFZ Data Services 2020
Subjects:
Online Access:https://dx.doi.org/10.5880/gfz.4.1.2020.002
https://dataservices.gfz-potsdam.de/panmetaworks/showshort.php?id=escidoc:5034890
id ftdatacite:10.5880/gfz.4.1.2020.002
record_format openpolar
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language English
topic Topography
mountain height
force balance
EARTH SCIENCE > SOLID EARTH > TECTONICS > PLATE TECTONICS > STRESS
EARTH SCIENCE > SOLID EARTH > TECTONICS > PLATE TECTONICS > PLATE BOUNDARIES
EARTH SCIENCE > SOLID EARTH > TECTONICS > PLATE TECTONICS
spellingShingle Topography
mountain height
force balance
EARTH SCIENCE > SOLID EARTH > TECTONICS > PLATE TECTONICS > STRESS
EARTH SCIENCE > SOLID EARTH > TECTONICS > PLATE TECTONICS > PLATE BOUNDARIES
EARTH SCIENCE > SOLID EARTH > TECTONICS > PLATE TECTONICS
Dielforder, Armin
Hetzel, Ralf
Oncken, Onno
Shear stress along active megathrusts and force balance solutions
topic_facet Topography
mountain height
force balance
EARTH SCIENCE > SOLID EARTH > TECTONICS > PLATE TECTONICS > STRESS
EARTH SCIENCE > SOLID EARTH > TECTONICS > PLATE TECTONICS > PLATE BOUNDARIES
EARTH SCIENCE > SOLID EARTH > TECTONICS > PLATE TECTONICS
description The data are the source data for Figures 2, 3, and 4 in the paper "Megathrust shear force controls mountain height at convergent plate margins" by Dielforder, Hetzel, and Oncken (2020). Details on the calculation of the data are given in the methods section of this paper. The archive "2020-002_Dielforder-et-al_shear_stress_envelopes.zip" includes ten csv-files entitled "n_shear_stress_envelope.csv", where n is a number from 1 to 10 and refers to the margin transects studied in the paper (for labeling see below). The files provide the source data for the ten shear stress envelopes shown in Figure 2. In each file, the values in the first, second, and third column are depth (m), shear stress (MPa), and the one standard deviation of the shear stress (MPa), respectively. The archive "2020-002_Dielforder-et-al_shear_force_solutions.zip" contains one csv-file including 100,000 model solutions for the megathrust shear force (TN m-1). Columns 1 to 10 contain the solutions for the respective margin transects. The archive "2020-002_Dielforder-et-al_force_balance_solutions.zip" includes ten csv-files entitled "n_force_balance_solutions.csv" following the same labeling scheme as above. The values in the first, second, and third column are the 100,000 model solutions for the tectonically supported elevation TSE (m), the shear-force component required to support the submarine margin topography F_SMT (TN m-1), and the shear-force component available to support subaerial mountain height [delta]F_s (TN m-1), respectively. For the Himalayas (10_force_balance_solutions.csv), there are only values in the first column, because the Himalayas have no submarine margin topography. The 100,000 model solutions were used to calculate the mean values and one standard deviation shown in Figures 3 and 4 and listed in Table 1 and Extended Data Table 3. Labeling: 1, Northern Cascadia; 2, 3, and 4, Andes at 23º S, 34º S, and 36º S, respectively; 5, Northern Sumatra; 6, Kamchatka; 7, Japan Trench; 8, Nankai Trough; 9, Northern Hikurangi; 10, Himalayas. The references listed below provide the input parameters used to calculate the shear stress envelopes, F_s, TSE, F_SMT and [delta]Fs.
format Dataset
author Dielforder, Armin
Hetzel, Ralf
Oncken, Onno
author_facet Dielforder, Armin
Hetzel, Ralf
Oncken, Onno
author_sort Dielforder, Armin
title Shear stress along active megathrusts and force balance solutions
title_short Shear stress along active megathrusts and force balance solutions
title_full Shear stress along active megathrusts and force balance solutions
title_fullStr Shear stress along active megathrusts and force balance solutions
title_full_unstemmed Shear stress along active megathrusts and force balance solutions
title_sort shear stress along active megathrusts and force balance solutions
publisher GFZ Data Services
publishDate 2020
url https://dx.doi.org/10.5880/gfz.4.1.2020.002
https://dataservices.gfz-potsdam.de/panmetaworks/showshort.php?id=escidoc:5034890
genre Kamchatka
genre_facet Kamchatka
op_relation https://dx.doi.org/doi of paper when available
https://dx.doi.org/10.7289/v5c8276m
https://dx.doi.org/10.1038/417536a
https://dx.doi.org/10.1016/j.epsl.2017.06.021
https://dx.doi.org/10.1029/2005jb003916
https://dx.doi.org/10.1126/science.1255487
https://dx.doi.org/10.1029/2011jb008524
https://dx.doi.org/10.1126/science.aat4723
https://dx.doi.org/10.1029/2010gc003230
https://dx.doi.org/10.1029/2008jb005698
https://dx.doi.org/10.1016/j.tecto.2012.11.023
https://dx.doi.org/10.1029/2008jb005864
https://dx.doi.org/10.1029/2009jb006569
https://dx.doi.org/10.1126/science.1167719
https://dx.doi.org/10.1029/2002jb001771
https://dx.doi.org/10.1029/2005jb004108
https://dx.doi.org/10.1029/2012gl051308
https://dx.doi.org/10.1016/j.tecto.2012.07.009
https://dx.doi.org/10.1002/2014jb011170
https://dx.doi.org/10.1029/2003jb002958
https://dx.doi.org/10.1002/2017jb015384
https://dx.doi.org/10.1002/2015gl064845
https://dx.doi.org/10.1029/2005jb003976
https://dx.doi.org/10.1029/2009gc002610
https://dx.doi.org/10.1130/g30597.1
https://dx.doi.org/10.1029/1999jb900103
https://dx.doi.org/10.1785/0220130035
op_rights CC BY 4.0
http://creativecommons.org/licenses/by/4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.5880/gfz.4.1.2020.002
https://doi.org/doi of paper when available
https://doi.org/10.7289/v5c8276m
https://doi.org/10.1038/417536a
https://doi.org/10.1016/j.epsl.2017.06.021
https://doi.org/10.1029/2005jb003916
https://doi.o
_version_ 1766051797538963456
spelling ftdatacite:10.5880/gfz.4.1.2020.002 2023-05-15T16:59:31+02:00 Shear stress along active megathrusts and force balance solutions Dielforder, Armin Hetzel, Ralf Oncken, Onno 2020 application/octet-stream https://dx.doi.org/10.5880/gfz.4.1.2020.002 https://dataservices.gfz-potsdam.de/panmetaworks/showshort.php?id=escidoc:5034890 en eng GFZ Data Services https://dx.doi.org/doi of paper when available https://dx.doi.org/10.7289/v5c8276m https://dx.doi.org/10.1038/417536a https://dx.doi.org/10.1016/j.epsl.2017.06.021 https://dx.doi.org/10.1029/2005jb003916 https://dx.doi.org/10.1126/science.1255487 https://dx.doi.org/10.1029/2011jb008524 https://dx.doi.org/10.1126/science.aat4723 https://dx.doi.org/10.1029/2010gc003230 https://dx.doi.org/10.1029/2008jb005698 https://dx.doi.org/10.1016/j.tecto.2012.11.023 https://dx.doi.org/10.1029/2008jb005864 https://dx.doi.org/10.1029/2009jb006569 https://dx.doi.org/10.1126/science.1167719 https://dx.doi.org/10.1029/2002jb001771 https://dx.doi.org/10.1029/2005jb004108 https://dx.doi.org/10.1029/2012gl051308 https://dx.doi.org/10.1016/j.tecto.2012.07.009 https://dx.doi.org/10.1002/2014jb011170 https://dx.doi.org/10.1029/2003jb002958 https://dx.doi.org/10.1002/2017jb015384 https://dx.doi.org/10.1002/2015gl064845 https://dx.doi.org/10.1029/2005jb003976 https://dx.doi.org/10.1029/2009gc002610 https://dx.doi.org/10.1130/g30597.1 https://dx.doi.org/10.1029/1999jb900103 https://dx.doi.org/10.1785/0220130035 CC BY 4.0 http://creativecommons.org/licenses/by/4.0 CC-BY Topography mountain height force balance EARTH SCIENCE > SOLID EARTH > TECTONICS > PLATE TECTONICS > STRESS EARTH SCIENCE > SOLID EARTH > TECTONICS > PLATE TECTONICS > PLATE BOUNDARIES EARTH SCIENCE > SOLID EARTH > TECTONICS > PLATE TECTONICS dataset Dataset 2020 ftdatacite https://doi.org/10.5880/gfz.4.1.2020.002 https://doi.org/doi of paper when available https://doi.org/10.7289/v5c8276m https://doi.org/10.1038/417536a https://doi.org/10.1016/j.epsl.2017.06.021 https://doi.org/10.1029/2005jb003916 https://doi.o 2021-11-05T12:55:41Z The data are the source data for Figures 2, 3, and 4 in the paper "Megathrust shear force controls mountain height at convergent plate margins" by Dielforder, Hetzel, and Oncken (2020). Details on the calculation of the data are given in the methods section of this paper. The archive "2020-002_Dielforder-et-al_shear_stress_envelopes.zip" includes ten csv-files entitled "n_shear_stress_envelope.csv", where n is a number from 1 to 10 and refers to the margin transects studied in the paper (for labeling see below). The files provide the source data for the ten shear stress envelopes shown in Figure 2. In each file, the values in the first, second, and third column are depth (m), shear stress (MPa), and the one standard deviation of the shear stress (MPa), respectively. The archive "2020-002_Dielforder-et-al_shear_force_solutions.zip" contains one csv-file including 100,000 model solutions for the megathrust shear force (TN m-1). Columns 1 to 10 contain the solutions for the respective margin transects. The archive "2020-002_Dielforder-et-al_force_balance_solutions.zip" includes ten csv-files entitled "n_force_balance_solutions.csv" following the same labeling scheme as above. The values in the first, second, and third column are the 100,000 model solutions for the tectonically supported elevation TSE (m), the shear-force component required to support the submarine margin topography F_SMT (TN m-1), and the shear-force component available to support subaerial mountain height [delta]F_s (TN m-1), respectively. For the Himalayas (10_force_balance_solutions.csv), there are only values in the first column, because the Himalayas have no submarine margin topography. The 100,000 model solutions were used to calculate the mean values and one standard deviation shown in Figures 3 and 4 and listed in Table 1 and Extended Data Table 3. Labeling: 1, Northern Cascadia; 2, 3, and 4, Andes at 23º S, 34º S, and 36º S, respectively; 5, Northern Sumatra; 6, Kamchatka; 7, Japan Trench; 8, Nankai Trough; 9, Northern Hikurangi; 10, Himalayas. The references listed below provide the input parameters used to calculate the shear stress envelopes, F_s, TSE, F_SMT and [delta]Fs. Dataset Kamchatka DataCite Metadata Store (German National Library of Science and Technology)