Simulated vertical structure of the ice shelf–ocean boundary current under supercooled condition beneath the Amery Ice Shelf, East Antarctica ...
<!--!introduction!--> The prevalence of supercooled Ice Shelf Water plumes carrying suspended frazil ice underneath the cold-water ice shelves is critically responsible for the marine ice production and the Antarctic Bottom Water formation in Antarctic. However, knowledge of these unique super...
Main Authors: | , , , |
---|---|
Format: | Article in Journal/Newspaper |
Language: | unknown |
Published: |
GFZ German Research Centre for Geosciences
2023
|
Subjects: | |
Online Access: | https://dx.doi.org/10.57757/iugg23-0294 https://gfzpublic.gfz-potsdam.de/pubman/item/item_5016155 |
Summary: | <!--!introduction!--> The prevalence of supercooled Ice Shelf Water plumes carrying suspended frazil ice underneath the cold-water ice shelves is critically responsible for the marine ice production and the Antarctic Bottom Water formation in Antarctic. However, knowledge of these unique supercooled buoyant flows is still limited, let alone their vertical structure. Here we extended the vertical one-dimensional ice shelf–ocean boundary current (ISOBC) model from Jenkins (2016) by incorporating a frazil ice module and the k-���� turbulence closure. Based on that modified model, we reproduced the measured thermohaline properties of a perennially-prominent supercooled ISOBC underneath the Amery Ice Shelf, East Antarctica, and conducted sensitivity runs to a variety of factors, including advection of scalar quantities, far-field geostrophic currents, basal slope, and frazil ice size distribution. After that, following conclusions can be drawn: 1. the vertical structure of the ISOBC can be hardly reasonably ... : The 28th IUGG General Assembly (IUGG2023) (Berlin 2023) ... |
---|