Quantifying the contribution of surface buoyancy forcing to recent subpolar AMOC variability ...

<!--!introduction!--> In the subpolar North Atlantic (SPNA), interannual to multidecadal variability in the Atlantic Meridional Overturning Circulation (AMOC) is primarily attributed to surface buoyancy forcing. Here, warm surface waters arriving via the Gulf Stream and North Atlantic Current...

Full description

Bibliographic Details
Main Authors: Marris, Charlotte, Marsh, Robert
Format: Article in Journal/Newspaper
Language:unknown
Published: GFZ German Research Centre for Geosciences 2023
Subjects:
Online Access:https://dx.doi.org/10.57757/iugg23-0112
https://gfzpublic.gfz-potsdam.de/pubman/item/item_5016444
Description
Summary:<!--!introduction!--> In the subpolar North Atlantic (SPNA), interannual to multidecadal variability in the Atlantic Meridional Overturning Circulation (AMOC) is primarily attributed to surface buoyancy forcing. Here, warm surface waters arriving via the Gulf Stream and North Atlantic Current undergo an intense loss of heat and freshwater to the atmosphere, and are thus transformed to cold and dense waters which subsequently sink and are returned southward at depth. Quantifying the contribution of surface buoyancy forcing to AMOC variability is essential for modelling how the AMOC will respond to predicted warming and freshening at high latitudes. In a water mass transformation framework, fields of surface density and surface density flux from the GODAS ocean reanalysis are used to construct the surface-forced overturning circulation (SFOC) streamfunction for the SPNA (48-65°N) in an operational assimilation over 1980-2020. Computed and plotted in latitude-density space, the SFOC reconstruction ... : The 28th IUGG General Assembly (IUGG2023) (Berlin 2023) ...