Soil texture dataset from the publication: "Machine learning applied for Antarctic soil mapping: Spatial prediction of soil texture for Maritime Antarctica and Northern Antarctic Peninsula' ...

Clay, silt and sand distribution in Antarctic soils modeled and predicted through Machine Learning approaches, legacy soil data and environmental covariates. The coefficient of variation and quantile data represent the spatial uncertainty of the predictions. For more information about the methodolog...

Full description

Bibliographic Details
Main Authors: Siqueira, Rafael, Moquedace, Cássio, Francelino, Márcio, Schaefer, Carlos, Elpídio, Fernandes-Filho
Format: Dataset
Language:English
Published: Zenodo 2023
Subjects:
Online Access:https://dx.doi.org/10.5281/zenodo.8346734
https://zenodo.org/record/8346734
id ftdatacite:10.5281/zenodo.8346734
record_format openpolar
spelling ftdatacite:10.5281/zenodo.8346734 2023-11-05T03:36:56+01:00 Soil texture dataset from the publication: "Machine learning applied for Antarctic soil mapping: Spatial prediction of soil texture for Maritime Antarctica and Northern Antarctic Peninsula' ... Siqueira, Rafael Moquedace, Cássio Francelino, Márcio Schaefer, Carlos Elpídio, Fernandes-Filho 2023 https://dx.doi.org/10.5281/zenodo.8346734 https://zenodo.org/record/8346734 en eng Zenodo https://zenodo.org/communities/labgeoufv_brazil https://dx.doi.org/10.1016/j.geoderma.2023.116405 https://dx.doi.org/10.5281/zenodo.8346735 https://zenodo.org/communities/labgeoufv_brazil Open Access Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode cc-by-4.0 info:eu-repo/semantics/openAccess Digital Soil Mapping Antarctica Soil texture Dataset dataset 2023 ftdatacite https://doi.org/10.5281/zenodo.834673410.1016/j.geoderma.2023.11640510.5281/zenodo.8346735 2023-10-09T11:04:53Z Clay, silt and sand distribution in Antarctic soils modeled and predicted through Machine Learning approaches, legacy soil data and environmental covariates. The coefficient of variation and quantile data represent the spatial uncertainty of the predictions. For more information about the methodology used, users are referred to the article: Siqueira, R.G., Moquedace, C.M., Francelino, M.R., Schaefer, C.E.G.R., Fernandes-Filho, E.I., 2023. Machine learning applied for Antarctic soil mapping: Spatial prediction of soil texture for Maritime Antarctica and Northern Antarctic Peninsula. Geoderma 432, 116405. https://doi.org/10.1016/j.geoderma.2023.116405 The .zip file has the following folders: 1) soil_texture_antarctica: soil texture information containing clay, silt and sand contents 2) soil_texture_coefficient_variation: uncertainty from the coefficient of variation of the soil texture prediction 3) soil_texture_prediction_interval: uncertainty from the prediction interval 90% (Q95% - Q5%) of the soil texture ... Dataset Antarc* Antarctic Antarctic Peninsula Antarctica DataCite Metadata Store (German National Library of Science and Technology)
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language English
topic Digital Soil Mapping
Antarctica
Soil texture
spellingShingle Digital Soil Mapping
Antarctica
Soil texture
Siqueira, Rafael
Moquedace, Cássio
Francelino, Márcio
Schaefer, Carlos
Elpídio, Fernandes-Filho
Soil texture dataset from the publication: "Machine learning applied for Antarctic soil mapping: Spatial prediction of soil texture for Maritime Antarctica and Northern Antarctic Peninsula' ...
topic_facet Digital Soil Mapping
Antarctica
Soil texture
description Clay, silt and sand distribution in Antarctic soils modeled and predicted through Machine Learning approaches, legacy soil data and environmental covariates. The coefficient of variation and quantile data represent the spatial uncertainty of the predictions. For more information about the methodology used, users are referred to the article: Siqueira, R.G., Moquedace, C.M., Francelino, M.R., Schaefer, C.E.G.R., Fernandes-Filho, E.I., 2023. Machine learning applied for Antarctic soil mapping: Spatial prediction of soil texture for Maritime Antarctica and Northern Antarctic Peninsula. Geoderma 432, 116405. https://doi.org/10.1016/j.geoderma.2023.116405 The .zip file has the following folders: 1) soil_texture_antarctica: soil texture information containing clay, silt and sand contents 2) soil_texture_coefficient_variation: uncertainty from the coefficient of variation of the soil texture prediction 3) soil_texture_prediction_interval: uncertainty from the prediction interval 90% (Q95% - Q5%) of the soil texture ...
format Dataset
author Siqueira, Rafael
Moquedace, Cássio
Francelino, Márcio
Schaefer, Carlos
Elpídio, Fernandes-Filho
author_facet Siqueira, Rafael
Moquedace, Cássio
Francelino, Márcio
Schaefer, Carlos
Elpídio, Fernandes-Filho
author_sort Siqueira, Rafael
title Soil texture dataset from the publication: "Machine learning applied for Antarctic soil mapping: Spatial prediction of soil texture for Maritime Antarctica and Northern Antarctic Peninsula' ...
title_short Soil texture dataset from the publication: "Machine learning applied for Antarctic soil mapping: Spatial prediction of soil texture for Maritime Antarctica and Northern Antarctic Peninsula' ...
title_full Soil texture dataset from the publication: "Machine learning applied for Antarctic soil mapping: Spatial prediction of soil texture for Maritime Antarctica and Northern Antarctic Peninsula' ...
title_fullStr Soil texture dataset from the publication: "Machine learning applied for Antarctic soil mapping: Spatial prediction of soil texture for Maritime Antarctica and Northern Antarctic Peninsula' ...
title_full_unstemmed Soil texture dataset from the publication: "Machine learning applied for Antarctic soil mapping: Spatial prediction of soil texture for Maritime Antarctica and Northern Antarctic Peninsula' ...
title_sort soil texture dataset from the publication: "machine learning applied for antarctic soil mapping: spatial prediction of soil texture for maritime antarctica and northern antarctic peninsula' ...
publisher Zenodo
publishDate 2023
url https://dx.doi.org/10.5281/zenodo.8346734
https://zenodo.org/record/8346734
genre Antarc*
Antarctic
Antarctic Peninsula
Antarctica
genre_facet Antarc*
Antarctic
Antarctic Peninsula
Antarctica
op_relation https://zenodo.org/communities/labgeoufv_brazil
https://dx.doi.org/10.1016/j.geoderma.2023.116405
https://dx.doi.org/10.5281/zenodo.8346735
https://zenodo.org/communities/labgeoufv_brazil
op_rights Open Access
Creative Commons Attribution 4.0 International
https://creativecommons.org/licenses/by/4.0/legalcode
cc-by-4.0
info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.5281/zenodo.834673410.1016/j.geoderma.2023.11640510.5281/zenodo.8346735
_version_ 1781692221778558976