Bairdoppilata Coryell, Sample and Jennings 1935

Genus Bairdoppilata Coryell, Sample and Jennings, 1935 1935 Bairdoppilata Coryell, Sample and Jennings: 3. 1969 Bairdoppilata (Bairdoppilata) Coryell, Sample and Jennings—Maddocks: 66. 1995 Bairdoppilata Coryell, Sample and Jennings—Maddocks: 215. History . More than 100 nominal species have been cl...

Full description

Bibliographic Details
Main Author: Maddocks, Rosalie F.
Format: Text
Language:unknown
Published: Zenodo 2015
Subjects:
Online Access:https://dx.doi.org/10.5281/zenodo.6096172
https://zenodo.org/record/6096172
id ftdatacite:10.5281/zenodo.6096172
record_format openpolar
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language unknown
topic Biodiversity
Taxonomy
Animalia
Arthropoda
Ostracoda
Podocopida
Bairdiidae
Bairdoppilata
spellingShingle Biodiversity
Taxonomy
Animalia
Arthropoda
Ostracoda
Podocopida
Bairdiidae
Bairdoppilata
Maddocks, Rosalie F.
Bairdoppilata Coryell, Sample and Jennings 1935
topic_facet Biodiversity
Taxonomy
Animalia
Arthropoda
Ostracoda
Podocopida
Bairdiidae
Bairdoppilata
description Genus Bairdoppilata Coryell, Sample and Jennings, 1935 1935 Bairdoppilata Coryell, Sample and Jennings: 3. 1969 Bairdoppilata (Bairdoppilata) Coryell, Sample and Jennings—Maddocks: 66. 1995 Bairdoppilata Coryell, Sample and Jennings—Maddocks: 215. History . More than 100 nominal species have been classified in Bairdoppilata (Kempf 1986, 1995, 2004). Carapaces are recognizable by the accessory (bairdoppilatan) locking dentition, and the living animals have two scissors-like, terminal antennal claws. Because fossil representatives, including the Miocene type species, have been identified chiefly by the supplemental dentition, there was some doubt about the value of the genus for several decades (Morkhoven 1958, 1963). Confusion arose because supplemental dentition is also well expressed in Glyptobairdia coronata. Shaver (1961, p. 205, fig. 140) recognized Bairdoppilata in the Treatise, but Glyptobairdia was treated as a synonym of Triebelina . The taxonomic history of living ornate bairdiids has been reviewed by Bold (1974), Malz & Lord (1988), Maddocks & Wouters (1990), and many others cited therein. Bolz (1969, 1971) reviewed the prevalence of auxiliary dentition in Triassic genera of Bairdioidea. He was the first to explain its functional significance as a locking mechanism to reduce torque in high-arched carapaces, which increases the likelihood that this character may be subject to convergence. He emphasized the importance of considering all morphological features in a taxonomic diagnosis, rather than just one key character: “No single morphological feature seems alone sufficient to establish higher systematic units” (Bolz 1971, p. 725). Brady (1880, Pl. 3, figs. 2 b, 3 a) illustrated the two distal antennal claws and seven furcal setae of B. villosa , remarking on the prominent barbs of seta 2. Tressler (1949, Figs. 5, 8) illustrated the furca and antenna of B. cushmani but did not mention the two distal claws. Rome (1960) provided a meticulous description of the soft parts of G. coronata , which was then classified in Triebelina , but did not evaluate its distinctive features. It was Kornicker (1961, examining B. carinata , a synonym of B. cushmani ) who pointed out distinctive attributes of the furca and hemipenis that might support a generic diagnosis, although he did not mention the antenna. Kornicker was also the first to realize the taxonomic significance of the patch pattern of the carapace, which is often preserved in fossils. Maddocks (1969) proposed an expanded concept for the genus Bairdoppilata , which incorporated these and other characters of the soft parts and carapace, and which has proved to be sufficiently flexible to accommodate other new species as they turned up. Species included . The genus Bairdoppilata in its broadest usage includes at least three ecological groups of living species. The most diverse cluster consists of relatively small, mostly punctate species in tropical reef and phytal assemblages. The soft parts have been illustrated (at least in part) for the following shallow-water species of Bairdoppilata (listed alphabetically by original binomen): Bairdoppilata (Bairdoppilata) alcyonicola Maddocks, 1969 (Nosy Be, Madagascar) Bairdoppilata angolensis Hartmann, 1974 (Angola) [The published range (minimum to maximum) for carapace length is 30 µm, but for height the range is 110 µm. This is probably an error.] Bairdoppilata balihaiensis Hartmann, 1978 (Northwest Australia) Bairdoppilata (Bairdoppilata) cratericola Maddocks, 1969 (Nosy Be, Madagascar) Nesidea cushmani Tressler, 1949 (Florida, Bahamas) [= Bairdoppilata carinata Kornicker, 1961 by Maddocks 1969] Bairdoppilata cytheraeformis Hartmann, 1974 (Angola) Bairdoppilata geelongensis Hartmann, 1980 (South Australia) Bairdoppilata mocamedesensis Hartmann, 1974 (Angola) Bairdoppilata portsamsonensis Hartmann, 1978 (Northwest Australia) [The identity of this species is in doubt, because more than one species and genus are represented among the published illustrations. The RV belongs to a species of Bairdoppilata (Hartmann 1978, Figs. 13, 24), but Fig. 14 shows a LV of Neonesidea with caudal setae, and Fig. 25 shows a LV of Paranesidea with shield-shaped patch pattern. It is obvious that this RV could not fit inside either LV. Hartmann compared the hemipenis to that of B. balihaiensis, but his Fig. 31 shows many differences. The long copulatory tube ending in a tight coil is more appropriate for Neonesidea .] Bairdia simuvillosa Swain, 1967 (reported from the Gulf of California) [The published illustrations of appendages are from a living female specimen with scissors-like antennal claws, collected in Scammon Lagoon on the Pacific side of Baja California. It was illustrated as Fig. 32 a–i of Swain (1967) but probably drawn by Kenneth G. McKenzie. The published illustrations of the valves do not belong to Bairdoppilata but to species of Neonesidea (Swain, 1967, Figs. 30 c, d; Plate I, figs. 2 a–f, 8). In a separate paper, McKenzie and Swain (1967, Pl. 30, fig. 1) reported Bairdia simuvillosa in Scammon Lagoon, providing a photograph and more plausible carapace dimensions, but they did not mention whether it has bairdoppilatan dentition.] Bairdoppilata sinusaquilensis Hartmann, 1979 (Southwest Australia, also reported by Hartmann (1980) from South and Southeast Australia) Bairdoppilata sp. 2 of Maddocks, 1969 (Northwest Madagascar near Nosy Be) Bairdoppilata? sp. 2 of Maddocks, 1975 (Ascension Island) A second species-group of? Bairdoppilata has been reported from sediment samples in deeper and colder water. The carapace is large and nearly smooth. The accessory dentition of the hinge is developed in some populations but inconspicuous or undeveloped in others. Although Maddocks (1969, 1995) suggested that perhaps these species should eventually be classified in a new genus, it would be difficult to diagnose the genus on the basis of present knowledge. The species-level taxonomy is confused. In several cases the anatomical information is taken from doubtfully identified specimens collected at a great distance from the type locality, published at a time when taxonomists were inclined to underestimate taxonomic diversity in the deep sea. Brandão (2008) reviewed the complex history and numerous misidentifications of several of these species in the Southern Ocean and provided important new anatomical, taxonomic and zoogeographic information. The soft anatomy has been described, at least in part, for the following nominal species (listed by original binomen): Bairdia simplex Brady, 1880 (Challenger station 151, off Heard Island, Southern Ocean) [The appendage descriptions by Maddocks (1969) apply to specimen USNM 121347 from Eltanin station 418, near the Antarctic Peninsula, and specimen USNM 121348 from Eltanin station 1345, in the Pacific sector of the Southern Ocean. The identifications of those specimens require verification.] Nesidea labiata Müller, 1908 (Gauss Station, Southern Ocean) ? Bairdoppilata sp. 1 aff ? B. labiata of Brandão 2008 (Southern Ocean) ? Bairdoppilata sp. 2 aff ? B. labiata of Brandão 2008 (Weddell Sea) Bairdia hirsuta Brady, 1880 (Challenger station 300, near Juan Fernandez Island in the Southeast Pacific Ocean) [The appendage descriptions by Maddocks (1969, 1973) apply to specimen USNM 121353 from the Gulf of Mexico and specimen USNM 139891 from Eltanin station 25, near the Galapagos Islands. The identifications of those specimens require verification.] Bairdia villosa Brady, 1880 (Challenger station 149, off Kerguelen Island, Southern Ocean) [The appendage descriptions by Maddocks (1969) apply to specimen USNM 121344 from Eltanin station 418 near the Antarctic Peninsula. That identification requires verification.] ? Bairdoppilata sp. 5 of Brandão, 2008 (Knysna Beach, South Africa) ? Bairdoppilata sp. 6 of Brandão, 2008 (Lüderitz Bay, Namibia) A third cluster is represented by the genus Glyptobairdia , a small group of Neotropical reef-dwelling species with asymmetrical carapaces, pronounced ridges, deep punctae, bairdoppilatan accessory dentition, and scissors-like antennal claws. The soft anatomy has been described, at least in part, for the following species (listed by original binomen): Bairdia coronata Brady, 1870 (Caribbean, Bermuda, Bahamas, Belize) Bairdoppilata? sp. 1 of Maddocks, 1975 (Ascension Island; a juvenile) Carapace size and shape . Carapace lengths of species of Bairdoppilata range from 0.5 mm ( B . sp. 2, Ascension Island) to almost 2 mm ( ?B . sp. 1 aff. B. labiata , Antarctic Peninsula) (Table 2, Fig. 3). There is a positive association between carapace length and water depth, which involves an inverse relationship with water temperature and latitude. Larger species have been collected from bathyal depths and Antarctic waters. Few species of intermediate size are included in the dataset analyzed here, which is restricted to species whose soft anatomy has been described. The smallest species are those living in intertidal and shallow-subtidal, algal, sandy and coralline habitats in the tropical belt (Fig. 4). Unfortunately, for many of these species the dimensions have been reported only as population ranges (minimum to maximum), which obscures the biological trends. The carapace height:length proportion ranges from 0.5 to 0.8 (Table 2) and shows no effect of water depth or latitude. The greatest height is located at 0.47 to 0.51 of length. The carapace thickness:length proportion ranges from 0.41 to 0.48, and the location of greatest thickness is at 0.46 to 0.5 of length. Males are slightly shorter than and not as high as females, although the two populations overlap. This is the usual trend in Bairdiidae. The carapace has conspicuous left-right asymmetry in size and shape, with a larger LV that swells dorsally above the smaller RV. This is because the functional hinge must remain a straight line, independent of the carapace inflation and curvature. The higher the dorsal arch of the LV, the greater the difference in height and outline between the two valves. The LV reaches over the edge of the RV anterodorsally and posterodorsally, as well as ventromedially (as the bow-shaped process behind the mouth region). The lateral outline of the LV is rounded and more distinctive taxonomically, while that of the RV is angulate and less diagnostic. In dorsal view the carapace is moderately compressed, with tapered anterior and posterior ends and gently swollen midsection. The ventral region Explanation of abbreviations: NO = identification number in Figure 3, NAME = species name or informal identification, REF = published reference, LOC = collecting locality; LCAR = carapace length (Μm), HCAR = carapace height (Μm), H/L = carapace height:length ratio, DEPTH = water depth (m). sp 1 aff lab = ? Bairdoppilata sp. 1 aff. ? B. labiata , sp 2 aff lab = ?B . sp. 2 aff ? B. labiata, sp. 2 = B . sp. 2 (this paper), sp. 3 = B . sp. 3 (this paper), sp. 4 = B . sp. 4 (this paper). B 2008 = Brandão 2008, H 1974 = Hartmann 1974, H 1978 = Hartmann 1978, H 1979 = Hartmann 1979, H 1980 = Hartmann 1980, M 1969 = Maddocks 1969, M 1973 = Maddocks 1973, M 1975 = Maddocks 1975, R 1960 = Rome 1960, herein = this paper. ASC = Ascension Island; BAH = Bahama Islands; E 25 = Eltanin 25, 0 4 o 53 ’N, 80 o 28 ’W to 0 4 o 51 ’N, 80 o 28 ’W, east of Galapagos Islands; E 418 = Eltanin 418, 62o 39–40 ’S, 56 o 8–10 ’W, Antarctic Peninsula; E 1345 = Eltanin 1345, 54o 50– 51 ’S, 129 o 46–48 ’W, Pacific Sector of Southern Ocean; E 1418 = Eltanin 1418, 54o 32 ’S, 159 o02’E, Kerguelen Island; FFS = French Frigate Shoals, the Hawaiian Islands; GAUS = Gauss-Station, Antarctica; GM = Gulf of Mexico; KB = Kane’ohe Bay, the Hawaiian Islands; NB = Nosy Be, Madagascar; SB = St. Barthelmy Island, Lesser Antilles; SE AUS = Southeast Australia; W AFR = West Africa; W AUS = West Australia; WED = Weddell Sea, Antarctica. is not flattened, and the greatest thickness is located a little below mid-height. The exterior surface ranges from smooth to punctate. The preserved valves of shallow-water species are mostly transparent, except for an oval opaque patch located centrally over the adductor muscle scar pattern. There may be brown pigmentation either in two small spots or over much of the lateral surface. For shallow-water species, the lateral silhouettes of the carapace or LV can be sorted into three intergradational groups, which merely represent combinations of two trends, dorsal inflation and caudal extension: (1) Oblong, loaf-shaped or scoop-shaped, with low-arched, subtly angulate dorsal margin and smoothly rounded posterior margin, not caudate: B. scaura n. sp. , B. cytheraeformis, B. geelongensis, B. mocamedesensis, B. sinusaquilensis. (2) Dorsally arched, semicircular to subtriangular, with continuously rounded outlines, not caudate: B . sp. 2 (herein), B. angolensis, B. balihaiensis. (3) Caudate to sinuate, with smoothly arched to sinuous dorsal margin: B . sp. 2 (herein), B . sp. 3 (herein), B . sp. 4 (herein), B. alcyonicola, B. cratericola, B. cushmani. These shape tendencies help to distinguish species of Bairdoppilata from some other genera of Bairdiidae: Neonesidea (teardrop-shaped, with more symmetrical LV and RV), Aponesidea (flatiron-shaped, with flat venter), Havanardia (angulate, flat venter with ventrolateral keel), Mydionobairdia (box-shaped, tuberculate); Triebelina (rhomboidal box-shaped, punctate, ridged). Confusion arises because similar carapace outlines are found in some species of Paranesidea , which can be distinguished from Bairdoppilata only by close attention to details of hingement, patch pattern, surface ornament, appendages and genitalia. Hinge. The functional hinge is a straight median bar where the thickened edge of the RV fits into a groove beneath a ledge in the LV. The anterior and posterior ends of the bar are expanded ventrally and may be slightly elevated. The corresponding terminal sockets of the LV are shelf-like, without a ventral confining ridge. In calcified valves of some species, the dorsal surfaces of both the bar and the groove may be finely to coarsely striate. This serrate texture was first illustrated by Morkhoven (1958, Pl. 46, figs. 4–6) for G. co ro n a t a, where it is dramatically expressed. In that thick-walled species the “exceedingly minute striations under favorable lighting” (Stephenson 1946, p. 346) are vertical, regular, and sharply incised. The band of striations thins at both ends to wrap dorsally over the LV sockets, where it is reflected as complementary indentations across the terminal hinge teeth of the RV (Morkhoven 1958, Pl. 46, figs. 5, 6). A somewhat similar effect occurs in Macrocyprididae (Triebel 1960, Pl. 14, figs. 4–10; Maddocks 1990, Pl. 60, figs. 1–9, Pl. 61, figs. 1–9). Crenulate hinge texture in Bairdiidae was illustrated for Neonesidea schulzi (Hartmann, 1964), Neonesidea michaelseni Hartmann, 1984, and Bairdoppilata mocamedesensis by Hartmann (1964, Pl. 5, figs. 20, 21; 1974, Pl. 20, figs. 150 a, b; 1984, Pl. I, fig. 9). Titterton & Whatley illustrated striate hinges for four more species of Neonesidea and Bairdoppilata (1988, Pl. 1, figs. 8, 15; Pl. 2, figs. 6, 16). This striate zone is a microstructure within the carapace wall, rather than an articulation surface. It marks the uncalcified connective zone along the midline where only the chitin ligament connects the valves (Maddocks 1990, 1995). The term ligament was re-established for Ostracoda by Kornicker (1969). Its distinct ultrastructure as an independent element of the carapace was demonstrated by Yamada (2007 b), who sectioned the hinges of Neonesidea oligodentata (Kajiyama) and Triebelina sp. On this basis, he classified the hinge of Bairdioidea as “exterior type,” because the overlap structure (edge of LV) develops dorsal to the ligament. In the decalcified carapaces studied here, the contact zone between the valves displays as two narrow cords or ribbons of chitin (Fig. 9 G–J, 17 P, 21 K). This connective band is strong. The dissected specimens ripped through the fabric of the adjacent valve wall rather than separating along the midline (Figs. 12 E–F; 16 A; 20 A, L). In some Bairdiidae these cords appear to be straight ( Paranesidea sp. 2, Fig. 21 K–L; unpublished images of Neonesidea tenera) . In B. scaura, B. sp. 2 and B . sp. 4 each ribbon is sinusoidally rippled from anterior to posterior (Figs. 9 I –J, 12 A, 17 P). It is likely that this rippled band of chitin confers the striate texture to the hinge in a calcified specimen. Hartmann published an unusual SEM view of the hinge region in a well calcified valve of B. sinusaquilensis (1979, Pl. I, figs. 16–18). It shows a row of tiny globular projections within the calcified fabric of the hinge zone, which may be the lateral meander-edges of these zig-zag ribbons. At the anterior and posterior ends of the hinge zone in dorsal view in B. scaura , this chitinous band expands across the midline into the LV and becomes more coarsely scalloped (Figs. 9 G, I–J). These scallops are interpreted as tiny, crenulate teeth, just beyond and dorsal to the terminal shelf-sockets of the LV hinge. A similar, crenulate, dorsal end-tooth is visible in B . sp. 2 (Fig. 12 A, at the far right of the image, beyond the anterior socket-shelf). In B . sp. 4 these terminal teeth are evident but more subtle (Fig. 17 O). A five-part LV hinge with unusually deep, loculate terminal sockets and tiny, crenulate terminal teeth, as well as a serrate median element, was illustrated for Neonesidea michaelseni by Hartmann (1984, Pl. 1, figs. 6–11). The differentiation of terminal hinge teeth and sockets is a common device in Ostracoda to minimize valve offset, and one may speculate that Bairdiidae living in high-energy environments would benefit thereby. Accessory bairdoppilatan dentition. In calcified specimens, accessory bairdoppilatan dentition is clearly seen in both valves. On the anterodorsal and posterodorsal marginal infold (duplicature) of the LV, beneath the dorsal overhang, the surface swells into a small crescentic platform, in which are four to six depressions. Small teeth project from the anterodorsal and posterodorsal edges of the RV and fit into these depressio : Published as part of Maddocks, Rosalie F., 2015, New and poorly known species of Bairdoppilata and Paranesidea (Bairdiidae, Ostracoda) from French Frigate Shoals and O'ahu, the Hawaiian Islands, pp. 277-317 in Zootaxa 4059 (2) on pages 280-298, DOI: 10.11646/zootaxa.4059.2.3, http://zenodo.org/record/234129 : {"references": ["Coryell, H. N., Sample, C. H. & Jennings, P. H. (1935) Bairdoppilata, a new genus of Ostracoda, with two new species. American Museum Novitates, 777, 1 - 5.", "Kempf, E. K. (1986) Index and Bibliography of Marine Ostracoda, I, Index A. Geologisches Institut der Universitaet zu Koeln, Sonderveroeffentlichungen, No. 50, 1 - 762.", "Kempf, E. K. (1995) Index and Bibliography of Marine Ostracoda, 6 Index A, Supplement 1. Geologisches Institut der Universitaet zu Koeln, Sonderveroeffentlichungen, 100, 1 - 239.", "Kempf, E. K. (2004) Recent Marine Ostracoda of the World. Index and Bibliography of Marine Ostracoda, 16, Index D. CD- ROM published by the Author.", "Morkhoven, F. P. C. M. van (1958) On the validity of the ostracod genera Glyptobairdia and Bairdoppilata. Journal of Paleontology, 32, 366 - 368.", "Morkhoven, F. P. C. M. van (1963) Post-Palaeozoic Ostracoda, Their Morphology, Taxonomy, and Economic Use, Volume II, Generic Descriptions. Amsterdam, Elsevier, 1 - 468.", "Shaver, R. H. (1961) Family Bairdiidae, In: Moore, R. C. (Ed.), Treatise on Invertebrate Paleontology, Part Q, Arthropoda 3, Crustacea Ostracoda. Geological Society of America and University of Kansas Press, Lawrence, Kansas. pp. 201 - 207.", "Bold, W. A. van den (1974) Ornate Bairdiidae in the Caribbean. Geoscience and Man, 6, 29 - 40.", "Malz, H. & Lord, A. (1988) Recent ornate bairdiid Ostracoda: Origin and distribution, pp. 63 - 74. In: Hanai, T., Ikeya, N. & Ishizaki, K. (Eds.), Evolutionary Biology of Ostracoda, its Fundamentals and Applications. Amsterdam, Elsevier, pp. 1 - 1356. http: // dx. doi. org / 10.1163 / 156854075 X 00874", "Maddocks, R. F. & Wouters, K. A. (1990) Triebelina? pustulata KEIJ, 1974 from the Maldive Islands: more homeomorphy in the ornate Bairdiidae (Ostracoda). Bulletin de l'Institut royal des Sciences naturelles de Belgique, Biology, 60, 173 - 180.", "Bolz, H. (1969) Der \" bairdoppilate Verschluss und Skulptur-Unterschiede bei Bairdien (Ostrac.) der alpinen Obertrias. Senckenbergiana lethaea, 50, 411 - 431.", "Bolz, H. (1971) Late Triassic Bairdiidae and Healdiidae. In: Oertli, H. J. (Ed.), Paleoecologie des Ostracodes. Bulletin du Centre de Recherche Pau-SNPA, 5 - suppl, 717 - 745.", "Brady, G. S. (1880) Report on the Ostracoda dredged by H. M. S. Challenger during the years 1873 - 1876. Report on the Scientific Results of the Voyage of H. M. S. Challenger, Zoology, 1 (3), 1 - 184.", "Tressler, W. L. (1949) Marine Ostracoda from Tortugas, Florida. Washington Academy of Sciences, Journal, 39, 335 - 343.", "Rome, D. R. (1960) Note sur Triebelina coronata (Brady) et sa position systematique. Institut royal des Sciences naturelles de Belgique, Bulletin, 36 (3), 1 - 14.", "Kornicker, L. S. (1961) Ecology and taxonomy of Recent Bairdiinae (Ostracoda). Micropaleontology, 7, 55 - 70. http: // dx. doi. org / 10.2307 / 1484143", "Maddocks, R. F. (1969) Revision of recent Bairdiidae (Ostracoda). United States National Museum Bulletin, 295, 1 - 126. http: // dx. doi. org / 10.5479 / si. 03629236.295.1", "Hartmann, G. (1978) Teil 1. Die Ostracoden der Ordnung Podocopida G. W. MLLER, 1894 der tropisch-subtropischen Westkuste Australiens (Zwischen Derby im Norden und Perth im Suden), pp. 64 - 219. In: Hartmann-Schrder & Hartmann, G., Zur Kenntnis des (Eds.), Eulitorals der australischen Kusten unter besonderer Berucksichtigung der Polychaeten und Ostracoden. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut, 75, 63 - 219.", "Hartmann, G. (1980) Teil 5. Die Ostracoden der Ordnung Podocopida G. W. MULLER 1894 der warmtemperierten und subtropisch-tropischen Kustenabschnitte der Sud- und Sudostkuste Australiens (zwischen Ceduna im Westen und Lakes Entrance im Osten). Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut, 77, 111 - 204.", "McKenzie, K. G. & Swain, F. M. (1967) Recent Ostracoda from Scammon Lagoon, Baja California. Journal of Paleontology, 41, 281 - 305.", "Hartmann, G. (1979). Teil 3. Die Ostracoden der Ordnung Podocopida G. W. MULLER 1894 der warm-temperierten (antiborealen) West- und Sudwestkuste Australiens (zwischen Perth im Norden und Eucla im Suden). Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut, 76, 219 - 301.", "Maddocks, R. F. (1975) Recent Bairdiidae (Ostracoda) from Ascension Island. Crustaceana, 28, 53 - 65. http: // dx. doi. org / 10.1163 / 156854075 X 00874", "Maddocks, R. F. (1995) Bairdiidae (Ostracoda) of Nosy Be, Madagascar. Mitteilungen aus dem hamburgischen zoologisches Museum und Institut, 92, Supplement, 197 - 236.", "Brandao, S. N. (2008) New species of Bairdioidea (Crustacea, Ostracoda) from the Southern Ocean and discussions on Bairdoppilata simplex (Brady, 1880),? Bairdoppilata labiata (Muller, 1908) and Bythopussella aculeata (Muller, 1908). Zootaxa, 1866, 373 - 452.", "Muller, G. W. (1908) Die Ostracoden der Deutschen Sudpolar-Expedition 1901 - 1903. Deutsche Sudpolar-Expedition, 10 (Zoology 2), 51 - 181.", "Brady, G. S. (1870) Descriptions of Ostracoda. In: Folin, L. de & Prier, L. (1867 - 1871) Les Fonds de la Mer, Etude Internationale sur les particularits nouvelles des rgions sous-marines. Savy, Librairie-Editeur, Paris. 1 (2) Livraisons 12 - 16, Chapitres 1 - 16, 177 - 256.", "Stephenson, M. B. (1946) Glyptobairdia, a new genus of Ostracoda. Journal of Paleontology, 20, 345 - 347.", "Triebel, E. (1960) Die taxionomische Stellung und die Gattungen der Unterfamilie Macrocypridinae (Ostracoda). Senckenbergiana Biologica, 41, 109 - 124.", "Hartmann, G. (1964) Zur Kenntnis der Ostracoden des Roten Meeres. Kieler Meeresforschungen, 20, 35 - 127.", "Hartmann, G. (1984) Zur Kenntnis der Ostracoden der polynesischen Inseln Huahin (Gesellschaftsinseln) und Rangiroa (Tuamotu-Inseln) mit Bemerkungen zur Verbreitung und Ausbreitung litoraler Ostracoden und einer bersicht uber die bislang auf den pazifischen Inseln gefundenen Arten. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut, 81, 117 - 169.", "Kornicker, L. S. (1969) Relationship between the free and attached margin of the myodocopid ostracod shell. In: Neale, J. W. (Ed.), The Taxonomy, Morphology and Ecology of the recent Ostracoda. Oliver and Boyd, Edinburgh, pp. 109 - 135.", "Yamada, S. (2007 b) Structure and evolution of podocopan ostracod hinges. Biological Journal of the Linnean Society, 92, 41 - 62. http: // dx. doi. org / 10.1111 / j. 1095 - 8312.2007.00870. x", "Smith, R. J. & Kamiya, T. (2002) The ontogeny of Neonesidea oligodentata (Bairdioidea, Ostracoda, Crustacea). Hydrobiologia, 489, 245 - 275. http: // dx. doi. org / 10.1023 / A: 1023221303564", "Puri, H. S. & Dickau, B. E. (1969) Use of normal pores in taxonomy of Ostracoda. Gulf Coast Association of Geological Societies, Transactions, 19, 353 - 367.", "Puri, H. S. (1974) Normal pores and the phylogeny of Ostracoda. In: Bold, W. A. van den (Ed.), Ostracoda, the Henry V. Howe Memorial Volume. Geoscience and Man, 6, 137 - 151.", "Keyser, D. (1980) Auftreten und Konstanz von Poren und Borsten auf der Schale von Podocopa (Ostracoda, Crustacea). Verhandlungen des naturwissenschaftlichen Vereins in Hamburg, n. f. 23, 175 - 193.", "Maddocks, R. F. (2013) New and poorly known species of Neonesidea (Bairdiidae, Ostracoda, Crustacea) from French Frigate Shoals, the Hawaiian Islands. Zootaxa, 3608 (6), 457 - 510. http: // dx. doi. org / 10.11646 / zootaxa. 3608.6.3", "Broodbakker, N. W. & Danielopol, D. L. (1982) The chaetotaxy of Cypridacea (Crustacea, Ostracoda) limbs: Proposals for a descriptive model. Bijdragen tot de Dierkunde, 52 (2) 103 - 120.", "Harding, J. P. (1964) Crustacean cuticle with reference to the ostracod carapace. In: Ostracods as Ecological and Palaeoecological Indicators, Pubblicazioni della Stazione Zoologica di Napoli, 33 (suppl.), 9 - 31.", "Yamada, S. (2007 a) Ultrastructure of the carapace margin in the Ostracoda (Arthropoda: Crustacea). Hydrobiologia, 585, 201 - 211. http: // dx. doi. org / 10.1007 / 978 - 1 - 4020 - 6418 - 0 _ 15", "Muller, G. W. (1894) Die Ostracoden des Golfes von Neapel und der angrenzenden Meeres Abschnitte. Fauna u. Flora des Golfes von Neapel, Monographie 21, 1 - 404.", "Brady, G. S. (1886) Notes on Entomostraca collected by Mr. A. Haly in Ceylon. The Journal of the Linnean Society of London, Zoology, 19, 293 - 317. http: // dx. doi. org / 10.1111 / j. 1096 - 3642.1886. tb 02227. x", "Smith, R. J., Kamiya, T., Horne, D. J., Tsukagoshi, A. (2005) Evaluation of a new character for the phylogenetic analysis of Ostracoda (Crustacea): the podocopan maxillular branchial plate. Zoologischer Anzeiger, 243, 139 - 153. http: // dx. doi. org / 10.1016 / j. jcz. 2004.07.005", "Danielopol, D. L. (1972) Supplementary data on the morphology of Neonesidea and remarks on the systematic position of the Family Bairdiidae (Ostracoda: Podocopida). Proceedings of the Biological Society of Washington, 85, 39 - 48.", "Maddocks, R. F. & Iliffe, T. M. (1986) Podocopid Ostracoda of Bermudian caves. Stygologia, 2, 25 - 76.", "Skogsberg, T. (1928) Studies on Marine Ostracoda, Part II, External Morphology of the Genus Cythereis with Descriptions of twenty-one New Species. Occasional Papers of the California Academy of Sciences, 15, 1 - 144.", "Hart Jr., C. W. & Hart, D. G. (1969) The functional morphology of entocytherid ostracod copulatory appendages, with a discussion of possible homologues in other ostracods, pp. 154 - 167. In: Neale, J. W. (Ed.), The Taxonomy, Morphology and Ecology of Recent Ostracoda. Edinburgh, Oliver and Boyd, pp. 1 - 553.", "Schulz, K. (1976) Das Chitinskelett der Podocopida (Ostracoda, Crustacea) und die Frage der Metamerie diese Gruppe. Doctoral Dissertation, Universitat Hamburg, 167 pp.", "Tsukagoshi, A. & Parker, A. R. (2000) Trunk segmentation of some podocopine lineages in Ostracoda. Hydrobiologia, 41, 15 - 30. http: // dx. doi. org / 10.1007 / 978 - 94 - 017 - 1508 - 9 _ 2", "Meisch, C. (2007) On the origin of the putative furca of the Ostracoda (Crustacea). Hydrobiologia, 585, 181 - 200. http: // dx. doi. org / 10.1007 / 978 - 1 - 4020 - 6418 - 0 _ 14", "Tanaka, G. (2005) Morphological design and fossil record of the podocopid ostracod naupliar eye. Hydrobiologia, 538, 231 - 242. http: // dx. doi. org / 10.1007 / s 10750 - 004 - 4969 - x", "Itterbeeck, J. van (2007) Oculobairdoppilata gen. nov. (Ostracoda, Bairdiidae): a new genus from the Paleocene of Tunisia. Journal of Micropalaeontology, 26, 97 - 101. http: // dx. doi. org / 10.1144 / jm. 26.2.97"]}
format Text
author Maddocks, Rosalie F.
author_facet Maddocks, Rosalie F.
author_sort Maddocks, Rosalie F.
title Bairdoppilata Coryell, Sample and Jennings 1935
title_short Bairdoppilata Coryell, Sample and Jennings 1935
title_full Bairdoppilata Coryell, Sample and Jennings 1935
title_fullStr Bairdoppilata Coryell, Sample and Jennings 1935
title_full_unstemmed Bairdoppilata Coryell, Sample and Jennings 1935
title_sort bairdoppilata coryell, sample and jennings 1935
publisher Zenodo
publishDate 2015
url https://dx.doi.org/10.5281/zenodo.6096172
https://zenodo.org/record/6096172
long_lat ENVELOPE(9.895,9.895,63.645,63.645)
ENVELOPE(69.500,69.500,-49.250,-49.250)
ENVELOPE(-62.233,-62.233,-63.250,-63.250)
ENVELOPE(75.033,75.033,-72.900,-72.900)
ENVELOPE(-69.133,-69.133,-72.133,-72.133)
ENVELOPE(72.556,72.556,-70.145,-70.145)
ENVELOPE(23.900,23.900,65.633,65.633)
ENVELOPE(163.917,163.917,-78.150,-78.150)
ENVELOPE(162.383,162.383,-77.017,-77.017)
ENVELOPE(8.098,8.098,62.640,62.640)
geographic Antarctic
Southern Ocean
The Antarctic
Antarctic Peninsula
Weddell Sea
Baja
Kerguelen
Heard Island
Galapagos
Pacific
Weddell
Seta
Kerguelen Island
Fernandez
Harding
Stephenson
Jennings
Roten
Teardrop
Flatiron
Horne
geographic_facet Antarctic
Southern Ocean
The Antarctic
Antarctic Peninsula
Weddell Sea
Baja
Kerguelen
Heard Island
Galapagos
Pacific
Weddell
Seta
Kerguelen Island
Fernandez
Harding
Stephenson
Jennings
Roten
Teardrop
Flatiron
Horne
genre Antarc*
Antarctic
Antarctic Peninsula
Antarctica
Heard Island
Southern Ocean
Weddell Sea
genre_facet Antarc*
Antarctic
Antarctic Peninsula
Antarctica
Heard Island
Southern Ocean
Weddell Sea
op_relation http://zenodo.org/record/234129
http://publication.plazi.org/id/6801FFD2FFF7FA56230AFFB56912860E
http://zoobank.org/3B0DAB43-FB07-4971-B3C5-F2005F7EE67A
https://zenodo.org/communities/biosyslit
https://dx.doi.org/10.11646/zootaxa.4059.2.3
http://zenodo.org/record/234129
http://publication.plazi.org/id/6801FFD2FFF7FA56230AFFB56912860E
https://dx.doi.org/10.5281/zenodo.234134
https://dx.doi.org/10.5281/zenodo.234137
https://dx.doi.org/10.5281/zenodo.234141
https://dx.doi.org/10.5281/zenodo.234142
https://dx.doi.org/10.5281/zenodo.234132
https://dx.doi.org/10.5281/zenodo.234133
https://dx.doi.org/10.5281/zenodo.234140
https://dx.doi.org/10.5281/zenodo.234150
https://dx.doi.org/10.5281/zenodo.234145
https://dx.doi.org/10.5281/zenodo.234149
https://dx.doi.org/10.5281/zenodo.234131
https://dx.doi.org/10.5281/zenodo.234135
https://dx.doi.org/10.5281/zenodo.234146
https://dx.doi.org/10.5281/zenodo.234144
https://dx.doi.org/10.5281/zenodo.234138
https://dx.doi.org/10.5281/zenodo.234136
https://dx.doi.org/10.5281/zenodo.234148
https://dx.doi.org/10.5281/zenodo.234143
https://dx.doi.org/10.5281/zenodo.234130
https://dx.doi.org/10.5281/zenodo.234139
http://zoobank.org/3B0DAB43-FB07-4971-B3C5-F2005F7EE67A
https://dx.doi.org/10.5281/zenodo.6096171
https://zenodo.org/communities/biosyslit
op_rights Open Access
Creative Commons Zero v1.0 Universal
https://creativecommons.org/publicdomain/zero/1.0/legalcode
cc0-1.0
info:eu-repo/semantics/openAccess
op_rightsnorm CC0
op_doi https://doi.org/10.5281/zenodo.6096172
https://doi.org/10.11646/zootaxa.4059.2.3
https://doi.org/10.5281/zenodo.234134
https://doi.org/10.5281/zenodo.234137
https://doi.org/10.5281/zenodo.234141
https://doi.org/10.5281/zenodo.234142
https://do
_version_ 1766260784860495872
spelling ftdatacite:10.5281/zenodo.6096172 2023-05-15T13:54:43+02:00 Bairdoppilata Coryell, Sample and Jennings 1935 Maddocks, Rosalie F. 2015 https://dx.doi.org/10.5281/zenodo.6096172 https://zenodo.org/record/6096172 unknown Zenodo http://zenodo.org/record/234129 http://publication.plazi.org/id/6801FFD2FFF7FA56230AFFB56912860E http://zoobank.org/3B0DAB43-FB07-4971-B3C5-F2005F7EE67A https://zenodo.org/communities/biosyslit https://dx.doi.org/10.11646/zootaxa.4059.2.3 http://zenodo.org/record/234129 http://publication.plazi.org/id/6801FFD2FFF7FA56230AFFB56912860E https://dx.doi.org/10.5281/zenodo.234134 https://dx.doi.org/10.5281/zenodo.234137 https://dx.doi.org/10.5281/zenodo.234141 https://dx.doi.org/10.5281/zenodo.234142 https://dx.doi.org/10.5281/zenodo.234132 https://dx.doi.org/10.5281/zenodo.234133 https://dx.doi.org/10.5281/zenodo.234140 https://dx.doi.org/10.5281/zenodo.234150 https://dx.doi.org/10.5281/zenodo.234145 https://dx.doi.org/10.5281/zenodo.234149 https://dx.doi.org/10.5281/zenodo.234131 https://dx.doi.org/10.5281/zenodo.234135 https://dx.doi.org/10.5281/zenodo.234146 https://dx.doi.org/10.5281/zenodo.234144 https://dx.doi.org/10.5281/zenodo.234138 https://dx.doi.org/10.5281/zenodo.234136 https://dx.doi.org/10.5281/zenodo.234148 https://dx.doi.org/10.5281/zenodo.234143 https://dx.doi.org/10.5281/zenodo.234130 https://dx.doi.org/10.5281/zenodo.234139 http://zoobank.org/3B0DAB43-FB07-4971-B3C5-F2005F7EE67A https://dx.doi.org/10.5281/zenodo.6096171 https://zenodo.org/communities/biosyslit Open Access Creative Commons Zero v1.0 Universal https://creativecommons.org/publicdomain/zero/1.0/legalcode cc0-1.0 info:eu-repo/semantics/openAccess CC0 Biodiversity Taxonomy Animalia Arthropoda Ostracoda Podocopida Bairdiidae Bairdoppilata article-journal ScholarlyArticle Taxonomic treatment Text 2015 ftdatacite https://doi.org/10.5281/zenodo.6096172 https://doi.org/10.11646/zootaxa.4059.2.3 https://doi.org/10.5281/zenodo.234134 https://doi.org/10.5281/zenodo.234137 https://doi.org/10.5281/zenodo.234141 https://doi.org/10.5281/zenodo.234142 https://do 2022-04-01T10:32:24Z Genus Bairdoppilata Coryell, Sample and Jennings, 1935 1935 Bairdoppilata Coryell, Sample and Jennings: 3. 1969 Bairdoppilata (Bairdoppilata) Coryell, Sample and Jennings—Maddocks: 66. 1995 Bairdoppilata Coryell, Sample and Jennings—Maddocks: 215. History . More than 100 nominal species have been classified in Bairdoppilata (Kempf 1986, 1995, 2004). Carapaces are recognizable by the accessory (bairdoppilatan) locking dentition, and the living animals have two scissors-like, terminal antennal claws. Because fossil representatives, including the Miocene type species, have been identified chiefly by the supplemental dentition, there was some doubt about the value of the genus for several decades (Morkhoven 1958, 1963). Confusion arose because supplemental dentition is also well expressed in Glyptobairdia coronata. Shaver (1961, p. 205, fig. 140) recognized Bairdoppilata in the Treatise, but Glyptobairdia was treated as a synonym of Triebelina . The taxonomic history of living ornate bairdiids has been reviewed by Bold (1974), Malz & Lord (1988), Maddocks & Wouters (1990), and many others cited therein. Bolz (1969, 1971) reviewed the prevalence of auxiliary dentition in Triassic genera of Bairdioidea. He was the first to explain its functional significance as a locking mechanism to reduce torque in high-arched carapaces, which increases the likelihood that this character may be subject to convergence. He emphasized the importance of considering all morphological features in a taxonomic diagnosis, rather than just one key character: “No single morphological feature seems alone sufficient to establish higher systematic units” (Bolz 1971, p. 725). Brady (1880, Pl. 3, figs. 2 b, 3 a) illustrated the two distal antennal claws and seven furcal setae of B. villosa , remarking on the prominent barbs of seta 2. Tressler (1949, Figs. 5, 8) illustrated the furca and antenna of B. cushmani but did not mention the two distal claws. Rome (1960) provided a meticulous description of the soft parts of G. coronata , which was then classified in Triebelina , but did not evaluate its distinctive features. It was Kornicker (1961, examining B. carinata , a synonym of B. cushmani ) who pointed out distinctive attributes of the furca and hemipenis that might support a generic diagnosis, although he did not mention the antenna. Kornicker was also the first to realize the taxonomic significance of the patch pattern of the carapace, which is often preserved in fossils. Maddocks (1969) proposed an expanded concept for the genus Bairdoppilata , which incorporated these and other characters of the soft parts and carapace, and which has proved to be sufficiently flexible to accommodate other new species as they turned up. Species included . The genus Bairdoppilata in its broadest usage includes at least three ecological groups of living species. The most diverse cluster consists of relatively small, mostly punctate species in tropical reef and phytal assemblages. The soft parts have been illustrated (at least in part) for the following shallow-water species of Bairdoppilata (listed alphabetically by original binomen): Bairdoppilata (Bairdoppilata) alcyonicola Maddocks, 1969 (Nosy Be, Madagascar) Bairdoppilata angolensis Hartmann, 1974 (Angola) [The published range (minimum to maximum) for carapace length is 30 µm, but for height the range is 110 µm. This is probably an error.] Bairdoppilata balihaiensis Hartmann, 1978 (Northwest Australia) Bairdoppilata (Bairdoppilata) cratericola Maddocks, 1969 (Nosy Be, Madagascar) Nesidea cushmani Tressler, 1949 (Florida, Bahamas) [= Bairdoppilata carinata Kornicker, 1961 by Maddocks 1969] Bairdoppilata cytheraeformis Hartmann, 1974 (Angola) Bairdoppilata geelongensis Hartmann, 1980 (South Australia) Bairdoppilata mocamedesensis Hartmann, 1974 (Angola) Bairdoppilata portsamsonensis Hartmann, 1978 (Northwest Australia) [The identity of this species is in doubt, because more than one species and genus are represented among the published illustrations. The RV belongs to a species of Bairdoppilata (Hartmann 1978, Figs. 13, 24), but Fig. 14 shows a LV of Neonesidea with caudal setae, and Fig. 25 shows a LV of Paranesidea with shield-shaped patch pattern. It is obvious that this RV could not fit inside either LV. Hartmann compared the hemipenis to that of B. balihaiensis, but his Fig. 31 shows many differences. The long copulatory tube ending in a tight coil is more appropriate for Neonesidea .] Bairdia simuvillosa Swain, 1967 (reported from the Gulf of California) [The published illustrations of appendages are from a living female specimen with scissors-like antennal claws, collected in Scammon Lagoon on the Pacific side of Baja California. It was illustrated as Fig. 32 a–i of Swain (1967) but probably drawn by Kenneth G. McKenzie. The published illustrations of the valves do not belong to Bairdoppilata but to species of Neonesidea (Swain, 1967, Figs. 30 c, d; Plate I, figs. 2 a–f, 8). In a separate paper, McKenzie and Swain (1967, Pl. 30, fig. 1) reported Bairdia simuvillosa in Scammon Lagoon, providing a photograph and more plausible carapace dimensions, but they did not mention whether it has bairdoppilatan dentition.] Bairdoppilata sinusaquilensis Hartmann, 1979 (Southwest Australia, also reported by Hartmann (1980) from South and Southeast Australia) Bairdoppilata sp. 2 of Maddocks, 1969 (Northwest Madagascar near Nosy Be) Bairdoppilata? sp. 2 of Maddocks, 1975 (Ascension Island) A second species-group of? Bairdoppilata has been reported from sediment samples in deeper and colder water. The carapace is large and nearly smooth. The accessory dentition of the hinge is developed in some populations but inconspicuous or undeveloped in others. Although Maddocks (1969, 1995) suggested that perhaps these species should eventually be classified in a new genus, it would be difficult to diagnose the genus on the basis of present knowledge. The species-level taxonomy is confused. In several cases the anatomical information is taken from doubtfully identified specimens collected at a great distance from the type locality, published at a time when taxonomists were inclined to underestimate taxonomic diversity in the deep sea. Brandão (2008) reviewed the complex history and numerous misidentifications of several of these species in the Southern Ocean and provided important new anatomical, taxonomic and zoogeographic information. The soft anatomy has been described, at least in part, for the following nominal species (listed by original binomen): Bairdia simplex Brady, 1880 (Challenger station 151, off Heard Island, Southern Ocean) [The appendage descriptions by Maddocks (1969) apply to specimen USNM 121347 from Eltanin station 418, near the Antarctic Peninsula, and specimen USNM 121348 from Eltanin station 1345, in the Pacific sector of the Southern Ocean. The identifications of those specimens require verification.] Nesidea labiata Müller, 1908 (Gauss Station, Southern Ocean) ? Bairdoppilata sp. 1 aff ? B. labiata of Brandão 2008 (Southern Ocean) ? Bairdoppilata sp. 2 aff ? B. labiata of Brandão 2008 (Weddell Sea) Bairdia hirsuta Brady, 1880 (Challenger station 300, near Juan Fernandez Island in the Southeast Pacific Ocean) [The appendage descriptions by Maddocks (1969, 1973) apply to specimen USNM 121353 from the Gulf of Mexico and specimen USNM 139891 from Eltanin station 25, near the Galapagos Islands. The identifications of those specimens require verification.] Bairdia villosa Brady, 1880 (Challenger station 149, off Kerguelen Island, Southern Ocean) [The appendage descriptions by Maddocks (1969) apply to specimen USNM 121344 from Eltanin station 418 near the Antarctic Peninsula. That identification requires verification.] ? Bairdoppilata sp. 5 of Brandão, 2008 (Knysna Beach, South Africa) ? Bairdoppilata sp. 6 of Brandão, 2008 (Lüderitz Bay, Namibia) A third cluster is represented by the genus Glyptobairdia , a small group of Neotropical reef-dwelling species with asymmetrical carapaces, pronounced ridges, deep punctae, bairdoppilatan accessory dentition, and scissors-like antennal claws. The soft anatomy has been described, at least in part, for the following species (listed by original binomen): Bairdia coronata Brady, 1870 (Caribbean, Bermuda, Bahamas, Belize) Bairdoppilata? sp. 1 of Maddocks, 1975 (Ascension Island; a juvenile) Carapace size and shape . Carapace lengths of species of Bairdoppilata range from 0.5 mm ( B . sp. 2, Ascension Island) to almost 2 mm ( ?B . sp. 1 aff. B. labiata , Antarctic Peninsula) (Table 2, Fig. 3). There is a positive association between carapace length and water depth, which involves an inverse relationship with water temperature and latitude. Larger species have been collected from bathyal depths and Antarctic waters. Few species of intermediate size are included in the dataset analyzed here, which is restricted to species whose soft anatomy has been described. The smallest species are those living in intertidal and shallow-subtidal, algal, sandy and coralline habitats in the tropical belt (Fig. 4). Unfortunately, for many of these species the dimensions have been reported only as population ranges (minimum to maximum), which obscures the biological trends. The carapace height:length proportion ranges from 0.5 to 0.8 (Table 2) and shows no effect of water depth or latitude. The greatest height is located at 0.47 to 0.51 of length. The carapace thickness:length proportion ranges from 0.41 to 0.48, and the location of greatest thickness is at 0.46 to 0.5 of length. Males are slightly shorter than and not as high as females, although the two populations overlap. This is the usual trend in Bairdiidae. The carapace has conspicuous left-right asymmetry in size and shape, with a larger LV that swells dorsally above the smaller RV. This is because the functional hinge must remain a straight line, independent of the carapace inflation and curvature. The higher the dorsal arch of the LV, the greater the difference in height and outline between the two valves. The LV reaches over the edge of the RV anterodorsally and posterodorsally, as well as ventromedially (as the bow-shaped process behind the mouth region). The lateral outline of the LV is rounded and more distinctive taxonomically, while that of the RV is angulate and less diagnostic. In dorsal view the carapace is moderately compressed, with tapered anterior and posterior ends and gently swollen midsection. The ventral region Explanation of abbreviations: NO = identification number in Figure 3, NAME = species name or informal identification, REF = published reference, LOC = collecting locality; LCAR = carapace length (Μm), HCAR = carapace height (Μm), H/L = carapace height:length ratio, DEPTH = water depth (m). sp 1 aff lab = ? Bairdoppilata sp. 1 aff. ? B. labiata , sp 2 aff lab = ?B . sp. 2 aff ? B. labiata, sp. 2 = B . sp. 2 (this paper), sp. 3 = B . sp. 3 (this paper), sp. 4 = B . sp. 4 (this paper). B 2008 = Brandão 2008, H 1974 = Hartmann 1974, H 1978 = Hartmann 1978, H 1979 = Hartmann 1979, H 1980 = Hartmann 1980, M 1969 = Maddocks 1969, M 1973 = Maddocks 1973, M 1975 = Maddocks 1975, R 1960 = Rome 1960, herein = this paper. ASC = Ascension Island; BAH = Bahama Islands; E 25 = Eltanin 25, 0 4 o 53 ’N, 80 o 28 ’W to 0 4 o 51 ’N, 80 o 28 ’W, east of Galapagos Islands; E 418 = Eltanin 418, 62o 39–40 ’S, 56 o 8–10 ’W, Antarctic Peninsula; E 1345 = Eltanin 1345, 54o 50– 51 ’S, 129 o 46–48 ’W, Pacific Sector of Southern Ocean; E 1418 = Eltanin 1418, 54o 32 ’S, 159 o02’E, Kerguelen Island; FFS = French Frigate Shoals, the Hawaiian Islands; GAUS = Gauss-Station, Antarctica; GM = Gulf of Mexico; KB = Kane’ohe Bay, the Hawaiian Islands; NB = Nosy Be, Madagascar; SB = St. Barthelmy Island, Lesser Antilles; SE AUS = Southeast Australia; W AFR = West Africa; W AUS = West Australia; WED = Weddell Sea, Antarctica. is not flattened, and the greatest thickness is located a little below mid-height. The exterior surface ranges from smooth to punctate. The preserved valves of shallow-water species are mostly transparent, except for an oval opaque patch located centrally over the adductor muscle scar pattern. There may be brown pigmentation either in two small spots or over much of the lateral surface. For shallow-water species, the lateral silhouettes of the carapace or LV can be sorted into three intergradational groups, which merely represent combinations of two trends, dorsal inflation and caudal extension: (1) Oblong, loaf-shaped or scoop-shaped, with low-arched, subtly angulate dorsal margin and smoothly rounded posterior margin, not caudate: B. scaura n. sp. , B. cytheraeformis, B. geelongensis, B. mocamedesensis, B. sinusaquilensis. (2) Dorsally arched, semicircular to subtriangular, with continuously rounded outlines, not caudate: B . sp. 2 (herein), B. angolensis, B. balihaiensis. (3) Caudate to sinuate, with smoothly arched to sinuous dorsal margin: B . sp. 2 (herein), B . sp. 3 (herein), B . sp. 4 (herein), B. alcyonicola, B. cratericola, B. cushmani. These shape tendencies help to distinguish species of Bairdoppilata from some other genera of Bairdiidae: Neonesidea (teardrop-shaped, with more symmetrical LV and RV), Aponesidea (flatiron-shaped, with flat venter), Havanardia (angulate, flat venter with ventrolateral keel), Mydionobairdia (box-shaped, tuberculate); Triebelina (rhomboidal box-shaped, punctate, ridged). Confusion arises because similar carapace outlines are found in some species of Paranesidea , which can be distinguished from Bairdoppilata only by close attention to details of hingement, patch pattern, surface ornament, appendages and genitalia. Hinge. The functional hinge is a straight median bar where the thickened edge of the RV fits into a groove beneath a ledge in the LV. The anterior and posterior ends of the bar are expanded ventrally and may be slightly elevated. The corresponding terminal sockets of the LV are shelf-like, without a ventral confining ridge. In calcified valves of some species, the dorsal surfaces of both the bar and the groove may be finely to coarsely striate. This serrate texture was first illustrated by Morkhoven (1958, Pl. 46, figs. 4–6) for G. co ro n a t a, where it is dramatically expressed. In that thick-walled species the “exceedingly minute striations under favorable lighting” (Stephenson 1946, p. 346) are vertical, regular, and sharply incised. The band of striations thins at both ends to wrap dorsally over the LV sockets, where it is reflected as complementary indentations across the terminal hinge teeth of the RV (Morkhoven 1958, Pl. 46, figs. 5, 6). A somewhat similar effect occurs in Macrocyprididae (Triebel 1960, Pl. 14, figs. 4–10; Maddocks 1990, Pl. 60, figs. 1–9, Pl. 61, figs. 1–9). Crenulate hinge texture in Bairdiidae was illustrated for Neonesidea schulzi (Hartmann, 1964), Neonesidea michaelseni Hartmann, 1984, and Bairdoppilata mocamedesensis by Hartmann (1964, Pl. 5, figs. 20, 21; 1974, Pl. 20, figs. 150 a, b; 1984, Pl. I, fig. 9). Titterton & Whatley illustrated striate hinges for four more species of Neonesidea and Bairdoppilata (1988, Pl. 1, figs. 8, 15; Pl. 2, figs. 6, 16). This striate zone is a microstructure within the carapace wall, rather than an articulation surface. It marks the uncalcified connective zone along the midline where only the chitin ligament connects the valves (Maddocks 1990, 1995). The term ligament was re-established for Ostracoda by Kornicker (1969). Its distinct ultrastructure as an independent element of the carapace was demonstrated by Yamada (2007 b), who sectioned the hinges of Neonesidea oligodentata (Kajiyama) and Triebelina sp. On this basis, he classified the hinge of Bairdioidea as “exterior type,” because the overlap structure (edge of LV) develops dorsal to the ligament. In the decalcified carapaces studied here, the contact zone between the valves displays as two narrow cords or ribbons of chitin (Fig. 9 G–J, 17 P, 21 K). This connective band is strong. The dissected specimens ripped through the fabric of the adjacent valve wall rather than separating along the midline (Figs. 12 E–F; 16 A; 20 A, L). In some Bairdiidae these cords appear to be straight ( Paranesidea sp. 2, Fig. 21 K–L; unpublished images of Neonesidea tenera) . In B. scaura, B. sp. 2 and B . sp. 4 each ribbon is sinusoidally rippled from anterior to posterior (Figs. 9 I –J, 12 A, 17 P). It is likely that this rippled band of chitin confers the striate texture to the hinge in a calcified specimen. Hartmann published an unusual SEM view of the hinge region in a well calcified valve of B. sinusaquilensis (1979, Pl. I, figs. 16–18). It shows a row of tiny globular projections within the calcified fabric of the hinge zone, which may be the lateral meander-edges of these zig-zag ribbons. At the anterior and posterior ends of the hinge zone in dorsal view in B. scaura , this chitinous band expands across the midline into the LV and becomes more coarsely scalloped (Figs. 9 G, I–J). These scallops are interpreted as tiny, crenulate teeth, just beyond and dorsal to the terminal shelf-sockets of the LV hinge. A similar, crenulate, dorsal end-tooth is visible in B . sp. 2 (Fig. 12 A, at the far right of the image, beyond the anterior socket-shelf). In B . sp. 4 these terminal teeth are evident but more subtle (Fig. 17 O). A five-part LV hinge with unusually deep, loculate terminal sockets and tiny, crenulate terminal teeth, as well as a serrate median element, was illustrated for Neonesidea michaelseni by Hartmann (1984, Pl. 1, figs. 6–11). The differentiation of terminal hinge teeth and sockets is a common device in Ostracoda to minimize valve offset, and one may speculate that Bairdiidae living in high-energy environments would benefit thereby. Accessory bairdoppilatan dentition. In calcified specimens, accessory bairdoppilatan dentition is clearly seen in both valves. On the anterodorsal and posterodorsal marginal infold (duplicature) of the LV, beneath the dorsal overhang, the surface swells into a small crescentic platform, in which are four to six depressions. Small teeth project from the anterodorsal and posterodorsal edges of the RV and fit into these depressio : Published as part of Maddocks, Rosalie F., 2015, New and poorly known species of Bairdoppilata and Paranesidea (Bairdiidae, Ostracoda) from French Frigate Shoals and O'ahu, the Hawaiian Islands, pp. 277-317 in Zootaxa 4059 (2) on pages 280-298, DOI: 10.11646/zootaxa.4059.2.3, http://zenodo.org/record/234129 : {"references": ["Coryell, H. N., Sample, C. H. & Jennings, P. H. (1935) Bairdoppilata, a new genus of Ostracoda, with two new species. American Museum Novitates, 777, 1 - 5.", "Kempf, E. K. (1986) Index and Bibliography of Marine Ostracoda, I, Index A. Geologisches Institut der Universitaet zu Koeln, Sonderveroeffentlichungen, No. 50, 1 - 762.", "Kempf, E. K. (1995) Index and Bibliography of Marine Ostracoda, 6 Index A, Supplement 1. Geologisches Institut der Universitaet zu Koeln, Sonderveroeffentlichungen, 100, 1 - 239.", "Kempf, E. K. (2004) Recent Marine Ostracoda of the World. Index and Bibliography of Marine Ostracoda, 16, Index D. CD- ROM published by the Author.", "Morkhoven, F. P. C. M. van (1958) On the validity of the ostracod genera Glyptobairdia and Bairdoppilata. Journal of Paleontology, 32, 366 - 368.", "Morkhoven, F. P. C. M. van (1963) Post-Palaeozoic Ostracoda, Their Morphology, Taxonomy, and Economic Use, Volume II, Generic Descriptions. Amsterdam, Elsevier, 1 - 468.", "Shaver, R. H. (1961) Family Bairdiidae, In: Moore, R. C. (Ed.), Treatise on Invertebrate Paleontology, Part Q, Arthropoda 3, Crustacea Ostracoda. Geological Society of America and University of Kansas Press, Lawrence, Kansas. pp. 201 - 207.", "Bold, W. A. van den (1974) Ornate Bairdiidae in the Caribbean. Geoscience and Man, 6, 29 - 40.", "Malz, H. & Lord, A. (1988) Recent ornate bairdiid Ostracoda: Origin and distribution, pp. 63 - 74. In: Hanai, T., Ikeya, N. & Ishizaki, K. (Eds.), Evolutionary Biology of Ostracoda, its Fundamentals and Applications. Amsterdam, Elsevier, pp. 1 - 1356. http: // dx. doi. org / 10.1163 / 156854075 X 00874", "Maddocks, R. F. & Wouters, K. A. (1990) Triebelina? pustulata KEIJ, 1974 from the Maldive Islands: more homeomorphy in the ornate Bairdiidae (Ostracoda). Bulletin de l'Institut royal des Sciences naturelles de Belgique, Biology, 60, 173 - 180.", "Bolz, H. (1969) Der \" bairdoppilate Verschluss und Skulptur-Unterschiede bei Bairdien (Ostrac.) der alpinen Obertrias. Senckenbergiana lethaea, 50, 411 - 431.", "Bolz, H. (1971) Late Triassic Bairdiidae and Healdiidae. In: Oertli, H. J. (Ed.), Paleoecologie des Ostracodes. Bulletin du Centre de Recherche Pau-SNPA, 5 - suppl, 717 - 745.", "Brady, G. S. (1880) Report on the Ostracoda dredged by H. M. S. Challenger during the years 1873 - 1876. Report on the Scientific Results of the Voyage of H. M. S. Challenger, Zoology, 1 (3), 1 - 184.", "Tressler, W. L. (1949) Marine Ostracoda from Tortugas, Florida. Washington Academy of Sciences, Journal, 39, 335 - 343.", "Rome, D. R. (1960) Note sur Triebelina coronata (Brady) et sa position systematique. Institut royal des Sciences naturelles de Belgique, Bulletin, 36 (3), 1 - 14.", "Kornicker, L. S. (1961) Ecology and taxonomy of Recent Bairdiinae (Ostracoda). Micropaleontology, 7, 55 - 70. http: // dx. doi. org / 10.2307 / 1484143", "Maddocks, R. F. (1969) Revision of recent Bairdiidae (Ostracoda). United States National Museum Bulletin, 295, 1 - 126. http: // dx. doi. org / 10.5479 / si. 03629236.295.1", "Hartmann, G. (1978) Teil 1. Die Ostracoden der Ordnung Podocopida G. W. MLLER, 1894 der tropisch-subtropischen Westkuste Australiens (Zwischen Derby im Norden und Perth im Suden), pp. 64 - 219. In: Hartmann-Schrder & Hartmann, G., Zur Kenntnis des (Eds.), Eulitorals der australischen Kusten unter besonderer Berucksichtigung der Polychaeten und Ostracoden. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut, 75, 63 - 219.", "Hartmann, G. (1980) Teil 5. Die Ostracoden der Ordnung Podocopida G. W. MULLER 1894 der warmtemperierten und subtropisch-tropischen Kustenabschnitte der Sud- und Sudostkuste Australiens (zwischen Ceduna im Westen und Lakes Entrance im Osten). Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut, 77, 111 - 204.", "McKenzie, K. G. & Swain, F. M. (1967) Recent Ostracoda from Scammon Lagoon, Baja California. Journal of Paleontology, 41, 281 - 305.", "Hartmann, G. (1979). Teil 3. Die Ostracoden der Ordnung Podocopida G. W. MULLER 1894 der warm-temperierten (antiborealen) West- und Sudwestkuste Australiens (zwischen Perth im Norden und Eucla im Suden). Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut, 76, 219 - 301.", "Maddocks, R. F. (1975) Recent Bairdiidae (Ostracoda) from Ascension Island. Crustaceana, 28, 53 - 65. http: // dx. doi. org / 10.1163 / 156854075 X 00874", "Maddocks, R. F. (1995) Bairdiidae (Ostracoda) of Nosy Be, Madagascar. Mitteilungen aus dem hamburgischen zoologisches Museum und Institut, 92, Supplement, 197 - 236.", "Brandao, S. N. (2008) New species of Bairdioidea (Crustacea, Ostracoda) from the Southern Ocean and discussions on Bairdoppilata simplex (Brady, 1880),? Bairdoppilata labiata (Muller, 1908) and Bythopussella aculeata (Muller, 1908). Zootaxa, 1866, 373 - 452.", "Muller, G. W. (1908) Die Ostracoden der Deutschen Sudpolar-Expedition 1901 - 1903. Deutsche Sudpolar-Expedition, 10 (Zoology 2), 51 - 181.", "Brady, G. S. (1870) Descriptions of Ostracoda. In: Folin, L. de & Prier, L. (1867 - 1871) Les Fonds de la Mer, Etude Internationale sur les particularits nouvelles des rgions sous-marines. Savy, Librairie-Editeur, Paris. 1 (2) Livraisons 12 - 16, Chapitres 1 - 16, 177 - 256.", "Stephenson, M. B. (1946) Glyptobairdia, a new genus of Ostracoda. Journal of Paleontology, 20, 345 - 347.", "Triebel, E. (1960) Die taxionomische Stellung und die Gattungen der Unterfamilie Macrocypridinae (Ostracoda). Senckenbergiana Biologica, 41, 109 - 124.", "Hartmann, G. (1964) Zur Kenntnis der Ostracoden des Roten Meeres. Kieler Meeresforschungen, 20, 35 - 127.", "Hartmann, G. (1984) Zur Kenntnis der Ostracoden der polynesischen Inseln Huahin (Gesellschaftsinseln) und Rangiroa (Tuamotu-Inseln) mit Bemerkungen zur Verbreitung und Ausbreitung litoraler Ostracoden und einer bersicht uber die bislang auf den pazifischen Inseln gefundenen Arten. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut, 81, 117 - 169.", "Kornicker, L. S. (1969) Relationship between the free and attached margin of the myodocopid ostracod shell. In: Neale, J. W. (Ed.), The Taxonomy, Morphology and Ecology of the recent Ostracoda. Oliver and Boyd, Edinburgh, pp. 109 - 135.", "Yamada, S. (2007 b) Structure and evolution of podocopan ostracod hinges. Biological Journal of the Linnean Society, 92, 41 - 62. http: // dx. doi. org / 10.1111 / j. 1095 - 8312.2007.00870. x", "Smith, R. J. & Kamiya, T. (2002) The ontogeny of Neonesidea oligodentata (Bairdioidea, Ostracoda, Crustacea). Hydrobiologia, 489, 245 - 275. http: // dx. doi. org / 10.1023 / A: 1023221303564", "Puri, H. S. & Dickau, B. E. (1969) Use of normal pores in taxonomy of Ostracoda. Gulf Coast Association of Geological Societies, Transactions, 19, 353 - 367.", "Puri, H. S. (1974) Normal pores and the phylogeny of Ostracoda. In: Bold, W. A. van den (Ed.), Ostracoda, the Henry V. Howe Memorial Volume. Geoscience and Man, 6, 137 - 151.", "Keyser, D. (1980) Auftreten und Konstanz von Poren und Borsten auf der Schale von Podocopa (Ostracoda, Crustacea). Verhandlungen des naturwissenschaftlichen Vereins in Hamburg, n. f. 23, 175 - 193.", "Maddocks, R. F. (2013) New and poorly known species of Neonesidea (Bairdiidae, Ostracoda, Crustacea) from French Frigate Shoals, the Hawaiian Islands. Zootaxa, 3608 (6), 457 - 510. http: // dx. doi. org / 10.11646 / zootaxa. 3608.6.3", "Broodbakker, N. W. & Danielopol, D. L. (1982) The chaetotaxy of Cypridacea (Crustacea, Ostracoda) limbs: Proposals for a descriptive model. Bijdragen tot de Dierkunde, 52 (2) 103 - 120.", "Harding, J. P. (1964) Crustacean cuticle with reference to the ostracod carapace. In: Ostracods as Ecological and Palaeoecological Indicators, Pubblicazioni della Stazione Zoologica di Napoli, 33 (suppl.), 9 - 31.", "Yamada, S. (2007 a) Ultrastructure of the carapace margin in the Ostracoda (Arthropoda: Crustacea). Hydrobiologia, 585, 201 - 211. http: // dx. doi. org / 10.1007 / 978 - 1 - 4020 - 6418 - 0 _ 15", "Muller, G. W. (1894) Die Ostracoden des Golfes von Neapel und der angrenzenden Meeres Abschnitte. Fauna u. Flora des Golfes von Neapel, Monographie 21, 1 - 404.", "Brady, G. S. (1886) Notes on Entomostraca collected by Mr. A. Haly in Ceylon. The Journal of the Linnean Society of London, Zoology, 19, 293 - 317. http: // dx. doi. org / 10.1111 / j. 1096 - 3642.1886. tb 02227. x", "Smith, R. J., Kamiya, T., Horne, D. J., Tsukagoshi, A. (2005) Evaluation of a new character for the phylogenetic analysis of Ostracoda (Crustacea): the podocopan maxillular branchial plate. Zoologischer Anzeiger, 243, 139 - 153. http: // dx. doi. org / 10.1016 / j. jcz. 2004.07.005", "Danielopol, D. L. (1972) Supplementary data on the morphology of Neonesidea and remarks on the systematic position of the Family Bairdiidae (Ostracoda: Podocopida). Proceedings of the Biological Society of Washington, 85, 39 - 48.", "Maddocks, R. F. & Iliffe, T. M. (1986) Podocopid Ostracoda of Bermudian caves. Stygologia, 2, 25 - 76.", "Skogsberg, T. (1928) Studies on Marine Ostracoda, Part II, External Morphology of the Genus Cythereis with Descriptions of twenty-one New Species. Occasional Papers of the California Academy of Sciences, 15, 1 - 144.", "Hart Jr., C. W. & Hart, D. G. (1969) The functional morphology of entocytherid ostracod copulatory appendages, with a discussion of possible homologues in other ostracods, pp. 154 - 167. In: Neale, J. W. (Ed.), The Taxonomy, Morphology and Ecology of Recent Ostracoda. Edinburgh, Oliver and Boyd, pp. 1 - 553.", "Schulz, K. (1976) Das Chitinskelett der Podocopida (Ostracoda, Crustacea) und die Frage der Metamerie diese Gruppe. Doctoral Dissertation, Universitat Hamburg, 167 pp.", "Tsukagoshi, A. & Parker, A. R. (2000) Trunk segmentation of some podocopine lineages in Ostracoda. Hydrobiologia, 41, 15 - 30. http: // dx. doi. org / 10.1007 / 978 - 94 - 017 - 1508 - 9 _ 2", "Meisch, C. (2007) On the origin of the putative furca of the Ostracoda (Crustacea). Hydrobiologia, 585, 181 - 200. http: // dx. doi. org / 10.1007 / 978 - 1 - 4020 - 6418 - 0 _ 14", "Tanaka, G. (2005) Morphological design and fossil record of the podocopid ostracod naupliar eye. Hydrobiologia, 538, 231 - 242. http: // dx. doi. org / 10.1007 / s 10750 - 004 - 4969 - x", "Itterbeeck, J. van (2007) Oculobairdoppilata gen. nov. (Ostracoda, Bairdiidae): a new genus from the Paleocene of Tunisia. Journal of Micropalaeontology, 26, 97 - 101. http: // dx. doi. org / 10.1144 / jm. 26.2.97"]} Text Antarc* Antarctic Antarctic Peninsula Antarctica Heard Island Southern Ocean Weddell Sea DataCite Metadata Store (German National Library of Science and Technology) Antarctic Southern Ocean The Antarctic Antarctic Peninsula Weddell Sea Baja Kerguelen Heard Island Galapagos Pacific Weddell Seta ENVELOPE(9.895,9.895,63.645,63.645) Kerguelen Island ENVELOPE(69.500,69.500,-49.250,-49.250) Fernandez ENVELOPE(-62.233,-62.233,-63.250,-63.250) Harding ENVELOPE(75.033,75.033,-72.900,-72.900) Stephenson ENVELOPE(-69.133,-69.133,-72.133,-72.133) Jennings ENVELOPE(72.556,72.556,-70.145,-70.145) Roten ENVELOPE(23.900,23.900,65.633,65.633) Teardrop ENVELOPE(163.917,163.917,-78.150,-78.150) Flatiron ENVELOPE(162.383,162.383,-77.017,-77.017) Horne ENVELOPE(8.098,8.098,62.640,62.640)