INFLUENCE OF THE PARAMETERS OF THE STRUCTURE OF METALLIC MATERIALS ON THE CORROSION RESISTANCE OF MINING MACHINE PARTS

To improve the reliability and durability of mining equipment, it is promising to use micro- and nanostructured metals and alloys, as well as metal-matrix composites. Ordinary and nanostructured samples of aluminum, copper, bronze C95200, an aluminum-magnesium alloy 518.0, and an aluminum-matrix dis...

Full description

Bibliographic Details
Main Authors: Rafail, Apakashev, Mark, Khazin
Format: Article in Journal/Newspaper
Language:Russian
Published: Zenodo 2021
Subjects:
Online Access:https://dx.doi.org/10.5281/zenodo.5901414
https://zenodo.org/record/5901414
id ftdatacite:10.5281/zenodo.5901414
record_format openpolar
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language Russian
topic mining machines
metal nanostructured materials
composite metal matrix materials
corrosion resistance.
spellingShingle mining machines
metal nanostructured materials
composite metal matrix materials
corrosion resistance.
Rafail, Apakashev
Mark, Khazin
INFLUENCE OF THE PARAMETERS OF THE STRUCTURE OF METALLIC MATERIALS ON THE CORROSION RESISTANCE OF MINING MACHINE PARTS
topic_facet mining machines
metal nanostructured materials
composite metal matrix materials
corrosion resistance.
description To improve the reliability and durability of mining equipment, it is promising to use micro- and nanostructured metals and alloys, as well as metal-matrix composites. Ordinary and nanostructured samples of aluminum, copper, bronze C95200, an aluminum-magnesium alloy 518.0, and an aluminum-matrix dispersion-reinforced composite containing 6.3 wt% titanium were studied. Structuring processing of metallic materials was carried out in the liquid phase state. The aluminum-matrix composite was synthesized by powder metallurgy. A model electrolyte solution, containing 30 g / L NaCl and an addition of acetic acid to pH = 4.0, was used as a corrosive medium. Corrosion resistance test base was 144 hours, temperature + 22 ° C, the volume of the solution in the cell with three samples was 500 ml. The relative calculated test error was 5%. A continuous uniform distribution of corrosion damage to the metal surface is observed for all studied samples. In this case, the corrosion rate (П, mm / year) of nanostructured metals and alloys samples is approximately 11% less than the corrosion rate of the same metals and alloys samples that have not undergone structuring treatment. For the aluminum matrix composite, it was noted that the dispersed reinforcement of aluminum with titanium provides an increase in the corrosion resistance of the matrix metal by 9.6%. The results of the conducted studies indicate an increased corrosion resistance of nanostructured metallic materials and an aluminum-matrix composite, which is important when they are used as part of equipment operated in a corrosive environment. : {"references": ["\u0412\u043b\u0430\u0441\u043e\u0432 \u0421.\u0413., \u041d\u0435\u043c\u0447\u0438\u043d\u043e\u0432\u0430 \u041d.\u0412., \u0417\u0435\u043b\u0438\u043d\u0441\u043a\u0430\u044f \u0415.\u0412. \u0425\u0430\u0440\u0430\u043a\u0442\u0435\u0440\u0438\u0441\u0442\u0438\u043a\u0430 \u0430\u0433\u0440\u0435\u0441\u0441\u0438\u0432\u043d\u043e\u0439 \u0441\u0440\u0435\u0434\u044b, \u0432\u043e\u0437\u0434\u0435\u0439\u0441\u0442\u0432\u0443\u044e\u0449\u0435\u0439 \u043d\u0430 \u043d\u0430\u0434\u0435\u0436\u043d\u043e\u0441\u0442\u044c \u044d\u043a\u0441\u043f\u043b\u0443\u0430\u0442\u0430\u0446\u0438\u0438 \u0433\u043e\u0440\u043d\u043e\u0433\u043e \u043e\u0431\u043e\u0440\u0443\u0434\u043e\u0432\u0430\u043d\u0438\u044f // \u0418\u043d\u0442\u0435\u0440\u043d\u0435\u0442-\u0436\u0443\u0440\u043d\u0430\u043b \u00ab\u041d\u0410\u0423\u041a\u041e\u0412\u0415\u0414\u0415\u041d\u0418\u0415\u00bb \u0422\u043e\u043c 9, \u21161 (2017) URL: http://naukovedenie.ru/PDF/41TVN117.pdf (\u0434\u043e\u0441\u0442\u0443\u043f \u0441\u0432\u043e\u0431\u043e\u0434\u043d\u044b\u0439).", "\u041a\u0430\u0431\u043b\u043e\u0432 \u0415.\u041d. \u041c\u0430\u0442\u0435\u0440\u0438\u0430\u043b\u044b \u043d\u043e\u0432\u043e\u0433\u043e \u043f\u043e\u043a\u043e\u043b\u0435\u043d\u0438\u044f \u2013 \u043e\u0441\u043d\u043e\u0432\u0430 \u0438\u043d\u043d\u043e\u0432\u0430\u0446\u0438\u0439, \u0442\u0435\u0445\u043d\u043e\u043b\u043e\u0433\u0438\u0447\u0435\u0441\u043a\u043e\u0433\u043e \u043b\u0438\u0434\u0435\u0440\u0441\u0442\u0432\u0430 \u0438 \u043d\u0430\u0446\u0438\u043e\u043d\u0430\u043b\u044c\u043d\u043e\u0439 \u0431\u0435\u0437\u043e\u043f\u0430\u0441\u043d\u043e\u0441\u0442\u0438 \u0420\u043e\u0441\u0441\u0438\u0438 // \u0418\u043d\u0442\u0435\u043b\u043b\u0435\u043a\u0442 \u0438 \u0442\u0435\u0445\u043d\u043e\u043b\u043e\u0433\u0438\u0438. 2016. \u21162 (14). \u0421. 16\u201321.", "Fortes, J.C., D\u00e1vila, J.M., Sarmiento, A.M. et al. Corrosion of Metallic and Structural Elements Exposed to Acid Mine Drainage (AMD). Mine Water Environ 39, 195\u2013203 (2020). https://doi.org/10.1007/s10230-020-00681-y", "Abdalsamed I. A., Amar I. A., Altohami F. A., Salih F. A., Mazek M. S., Ali M. A., Sharif A. A. Corrosion Strategy in Oil Field System. Journal of Chemical Reviews. 2020. Vol. 2. no. 1. pp. 28-39 DOI:10.33945/SAMI/JCR.2020.1.2", "Huang C., Chen X., Xue Z., Wang T. Effect of structure: A new insight into nanoparticle assemblies from inanimate to animate. SCIENCE ADVANCES. 2020: eaba1321. DOI: 10.1126/sciadv.aba1321", "Bykov Yu. A. Structural nanomaterials. Metallurgiya mashinostroyeniya. 2011. no. 1. pp. 9-19. [In Russ].", "Khazin M. L., Apakashev R. A. Micro and nanostructured copper films in mechanical engineering. Materials Today: Proceedings. 2019. Vol. 19. Part 5, pp. 25-2531.", "Apakashev R. A., Khazin M. L., Krasikov S. A. Effect of Nanostructuring of Aluminum, Copper, and Alloys on Their Basis Wear for Resistance and Hardness. Journal of Friction and Wear. 2020, Vol. 41. no. 5. pp. 428\u2013431. DOI: 10.3103/s1068366620050037R.A.", "GOST 9.908-85 Unified system of protection against corrosion and aging. Metals and alloys. Methods for the determination of indicators of corrosion and corrosion resistance. M.: IPK Izdatel'stvo standartov. 1999. 17 p. [In Russ].", "Soenoko R., Setyarini P. H., Hidayatullah S., Ma'arif M. S., Gapsari F. Corrosion characterization of Cu-based alloy in different environment. Metalurgija. 2020. Vol. 59. no. 3. p\u0440. 373-376. https://hrcak.srce.hr/237045", "Rohatgi P. K., Xiang C., Gupta N. Aqueous corrosion of metal matrix composites. In Comprehensive Composite Materials II. 2017. pp. 287-312. Elsevier. https://doi.org/10.1016/B978-0-12-803581-8.09985-9", "Sun L., He, X., Lu J. Nanotwinned and hierarchical nanotwinned metals: a review of experimental, computational and theoretical efforts. npj Comput Mater. 2018. Vol 4. p\u0440. 6. https://doi.org/10.1038/s41524-018-0062-2", "Berlanga-Labari C., Biezma-Moraleda M. V., Rivero P. J. Corrosion of Cast Aluminum Alloys: A Review. Metals. 2020. Vol. 10. no. 10. p\u0440. 1384-1423. doi:10.3390/met10101384C.", "Esquivel J., Murdoch H. A., Darling K. A., Gupta R. K. Excellent corrosion resistance and hardness in Al alloys by extended solid solubility and nanocrystalline structure. Materials Research Letters. 2018. Vol. 6 no. 1. p\u0440. 79-83, DOI: 10.1080/21663831.2017.1396262", "Chen T., Li J., Hao Y. Microstructures and corrosion properties of casting in situ Al3Ti-Al composites. Rare Metals. 2010. Vol. 29. p\u0440. 78\u201385. https://doi.org/10.1007/s12598-010-0014-6", "Sambathkumar M., Navaneethakrishnan P., Ponappa K., Sasikumar K. S. K. Mechanical and Corrosion Behavior of Al7075 (Hybrid) Metal Matrix Composites by Two Step Stir Casting Process. Lat. Am. j. solids struct. 2017. Vol. 14. no. 2. p\u0440. 243-255. https://doi.org/10.1590/1679-78253132"]}
format Article in Journal/Newspaper
author Rafail, Apakashev
Mark, Khazin
author_facet Rafail, Apakashev
Mark, Khazin
author_sort Rafail, Apakashev
title INFLUENCE OF THE PARAMETERS OF THE STRUCTURE OF METALLIC MATERIALS ON THE CORROSION RESISTANCE OF MINING MACHINE PARTS
title_short INFLUENCE OF THE PARAMETERS OF THE STRUCTURE OF METALLIC MATERIALS ON THE CORROSION RESISTANCE OF MINING MACHINE PARTS
title_full INFLUENCE OF THE PARAMETERS OF THE STRUCTURE OF METALLIC MATERIALS ON THE CORROSION RESISTANCE OF MINING MACHINE PARTS
title_fullStr INFLUENCE OF THE PARAMETERS OF THE STRUCTURE OF METALLIC MATERIALS ON THE CORROSION RESISTANCE OF MINING MACHINE PARTS
title_full_unstemmed INFLUENCE OF THE PARAMETERS OF THE STRUCTURE OF METALLIC MATERIALS ON THE CORROSION RESISTANCE OF MINING MACHINE PARTS
title_sort influence of the parameters of the structure of metallic materials on the corrosion resistance of mining machine parts
publisher Zenodo
publishDate 2021
url https://dx.doi.org/10.5281/zenodo.5901414
https://zenodo.org/record/5901414
long_lat ENVELOPE(-68.000,-68.000,-72.000,-72.000)
ENVELOPE(-62.033,-62.033,-64.550,-64.550)
ENVELOPE(-44.666,-44.666,-60.783,-60.783)
ENVELOPE(155.258,155.258,50.158,50.158)
ENVELOPE(-63.667,-63.667,-64.317,-64.317)
geographic Sarmiento
Rivero
Murdoch
Bykov
Esquivel
geographic_facet Sarmiento
Rivero
Murdoch
Bykov
Esquivel
genre sami
genre_facet sami
op_relation https://dx.doi.org/10.5281/zenodo.5901415
https://dx.doi.org/10.5281/zenodo.5901678
op_rights Closed Access
info:eu-repo/semantics/closedAccess
op_doi https://doi.org/10.5281/zenodo.5901414
https://doi.org/10.5281/zenodo.5901415
https://doi.org/10.5281/zenodo.5901678
_version_ 1766187162235043840
spelling ftdatacite:10.5281/zenodo.5901414 2023-05-15T18:14:22+02:00 INFLUENCE OF THE PARAMETERS OF THE STRUCTURE OF METALLIC MATERIALS ON THE CORROSION RESISTANCE OF MINING MACHINE PARTS Rafail, Apakashev Mark, Khazin 2021 https://dx.doi.org/10.5281/zenodo.5901414 https://zenodo.org/record/5901414 ru rus Zenodo https://dx.doi.org/10.5281/zenodo.5901415 https://dx.doi.org/10.5281/zenodo.5901678 Closed Access info:eu-repo/semantics/closedAccess mining machines metal nanostructured materials composite metal matrix materials corrosion resistance. ScholarlyArticle article-journal JournalArticle 2021 ftdatacite https://doi.org/10.5281/zenodo.5901414 https://doi.org/10.5281/zenodo.5901415 https://doi.org/10.5281/zenodo.5901678 2022-02-09T13:42:21Z To improve the reliability and durability of mining equipment, it is promising to use micro- and nanostructured metals and alloys, as well as metal-matrix composites. Ordinary and nanostructured samples of aluminum, copper, bronze C95200, an aluminum-magnesium alloy 518.0, and an aluminum-matrix dispersion-reinforced composite containing 6.3 wt% titanium were studied. Structuring processing of metallic materials was carried out in the liquid phase state. The aluminum-matrix composite was synthesized by powder metallurgy. A model electrolyte solution, containing 30 g / L NaCl and an addition of acetic acid to pH = 4.0, was used as a corrosive medium. Corrosion resistance test base was 144 hours, temperature + 22 ° C, the volume of the solution in the cell with three samples was 500 ml. The relative calculated test error was 5%. A continuous uniform distribution of corrosion damage to the metal surface is observed for all studied samples. In this case, the corrosion rate (П, mm / year) of nanostructured metals and alloys samples is approximately 11% less than the corrosion rate of the same metals and alloys samples that have not undergone structuring treatment. For the aluminum matrix composite, it was noted that the dispersed reinforcement of aluminum with titanium provides an increase in the corrosion resistance of the matrix metal by 9.6%. The results of the conducted studies indicate an increased corrosion resistance of nanostructured metallic materials and an aluminum-matrix composite, which is important when they are used as part of equipment operated in a corrosive environment. : {"references": ["\u0412\u043b\u0430\u0441\u043e\u0432 \u0421.\u0413., \u041d\u0435\u043c\u0447\u0438\u043d\u043e\u0432\u0430 \u041d.\u0412., \u0417\u0435\u043b\u0438\u043d\u0441\u043a\u0430\u044f \u0415.\u0412. \u0425\u0430\u0440\u0430\u043a\u0442\u0435\u0440\u0438\u0441\u0442\u0438\u043a\u0430 \u0430\u0433\u0440\u0435\u0441\u0441\u0438\u0432\u043d\u043e\u0439 \u0441\u0440\u0435\u0434\u044b, \u0432\u043e\u0437\u0434\u0435\u0439\u0441\u0442\u0432\u0443\u044e\u0449\u0435\u0439 \u043d\u0430 \u043d\u0430\u0434\u0435\u0436\u043d\u043e\u0441\u0442\u044c \u044d\u043a\u0441\u043f\u043b\u0443\u0430\u0442\u0430\u0446\u0438\u0438 \u0433\u043e\u0440\u043d\u043e\u0433\u043e \u043e\u0431\u043e\u0440\u0443\u0434\u043e\u0432\u0430\u043d\u0438\u044f // \u0418\u043d\u0442\u0435\u0440\u043d\u0435\u0442-\u0436\u0443\u0440\u043d\u0430\u043b \u00ab\u041d\u0410\u0423\u041a\u041e\u0412\u0415\u0414\u0415\u041d\u0418\u0415\u00bb \u0422\u043e\u043c 9, \u21161 (2017) URL: http://naukovedenie.ru/PDF/41TVN117.pdf (\u0434\u043e\u0441\u0442\u0443\u043f \u0441\u0432\u043e\u0431\u043e\u0434\u043d\u044b\u0439).", "\u041a\u0430\u0431\u043b\u043e\u0432 \u0415.\u041d. \u041c\u0430\u0442\u0435\u0440\u0438\u0430\u043b\u044b \u043d\u043e\u0432\u043e\u0433\u043e \u043f\u043e\u043a\u043e\u043b\u0435\u043d\u0438\u044f \u2013 \u043e\u0441\u043d\u043e\u0432\u0430 \u0438\u043d\u043d\u043e\u0432\u0430\u0446\u0438\u0439, \u0442\u0435\u0445\u043d\u043e\u043b\u043e\u0433\u0438\u0447\u0435\u0441\u043a\u043e\u0433\u043e \u043b\u0438\u0434\u0435\u0440\u0441\u0442\u0432\u0430 \u0438 \u043d\u0430\u0446\u0438\u043e\u043d\u0430\u043b\u044c\u043d\u043e\u0439 \u0431\u0435\u0437\u043e\u043f\u0430\u0441\u043d\u043e\u0441\u0442\u0438 \u0420\u043e\u0441\u0441\u0438\u0438 // \u0418\u043d\u0442\u0435\u043b\u043b\u0435\u043a\u0442 \u0438 \u0442\u0435\u0445\u043d\u043e\u043b\u043e\u0433\u0438\u0438. 2016. \u21162 (14). \u0421. 16\u201321.", "Fortes, J.C., D\u00e1vila, J.M., Sarmiento, A.M. et al. Corrosion of Metallic and Structural Elements Exposed to Acid Mine Drainage (AMD). Mine Water Environ 39, 195\u2013203 (2020). https://doi.org/10.1007/s10230-020-00681-y", "Abdalsamed I. A., Amar I. A., Altohami F. A., Salih F. A., Mazek M. S., Ali M. A., Sharif A. A. Corrosion Strategy in Oil Field System. Journal of Chemical Reviews. 2020. Vol. 2. no. 1. pp. 28-39 DOI:10.33945/SAMI/JCR.2020.1.2", "Huang C., Chen X., Xue Z., Wang T. Effect of structure: A new insight into nanoparticle assemblies from inanimate to animate. SCIENCE ADVANCES. 2020: eaba1321. DOI: 10.1126/sciadv.aba1321", "Bykov Yu. A. Structural nanomaterials. Metallurgiya mashinostroyeniya. 2011. no. 1. pp. 9-19. [In Russ].", "Khazin M. L., Apakashev R. A. Micro and nanostructured copper films in mechanical engineering. Materials Today: Proceedings. 2019. Vol. 19. Part 5, pp. 25-2531.", "Apakashev R. A., Khazin M. L., Krasikov S. A. Effect of Nanostructuring of Aluminum, Copper, and Alloys on Their Basis Wear for Resistance and Hardness. Journal of Friction and Wear. 2020, Vol. 41. no. 5. pp. 428\u2013431. DOI: 10.3103/s1068366620050037R.A.", "GOST 9.908-85 Unified system of protection against corrosion and aging. Metals and alloys. Methods for the determination of indicators of corrosion and corrosion resistance. M.: IPK Izdatel'stvo standartov. 1999. 17 p. [In Russ].", "Soenoko R., Setyarini P. H., Hidayatullah S., Ma'arif M. S., Gapsari F. Corrosion characterization of Cu-based alloy in different environment. Metalurgija. 2020. Vol. 59. no. 3. p\u0440. 373-376. https://hrcak.srce.hr/237045", "Rohatgi P. K., Xiang C., Gupta N. Aqueous corrosion of metal matrix composites. In Comprehensive Composite Materials II. 2017. pp. 287-312. Elsevier. https://doi.org/10.1016/B978-0-12-803581-8.09985-9", "Sun L., He, X., Lu J. Nanotwinned and hierarchical nanotwinned metals: a review of experimental, computational and theoretical efforts. npj Comput Mater. 2018. Vol 4. p\u0440. 6. https://doi.org/10.1038/s41524-018-0062-2", "Berlanga-Labari C., Biezma-Moraleda M. V., Rivero P. J. Corrosion of Cast Aluminum Alloys: A Review. Metals. 2020. Vol. 10. no. 10. p\u0440. 1384-1423. doi:10.3390/met10101384C.", "Esquivel J., Murdoch H. A., Darling K. A., Gupta R. K. Excellent corrosion resistance and hardness in Al alloys by extended solid solubility and nanocrystalline structure. Materials Research Letters. 2018. Vol. 6 no. 1. p\u0440. 79-83, DOI: 10.1080/21663831.2017.1396262", "Chen T., Li J., Hao Y. Microstructures and corrosion properties of casting in situ Al3Ti-Al composites. Rare Metals. 2010. Vol. 29. p\u0440. 78\u201385. https://doi.org/10.1007/s12598-010-0014-6", "Sambathkumar M., Navaneethakrishnan P., Ponappa K., Sasikumar K. S. K. Mechanical and Corrosion Behavior of Al7075 (Hybrid) Metal Matrix Composites by Two Step Stir Casting Process. Lat. Am. j. solids struct. 2017. Vol. 14. no. 2. p\u0440. 243-255. https://doi.org/10.1590/1679-78253132"]} Article in Journal/Newspaper sami DataCite Metadata Store (German National Library of Science and Technology) Sarmiento ENVELOPE(-68.000,-68.000,-72.000,-72.000) Rivero ENVELOPE(-62.033,-62.033,-64.550,-64.550) Murdoch ENVELOPE(-44.666,-44.666,-60.783,-60.783) Bykov ENVELOPE(155.258,155.258,50.158,50.158) Esquivel ENVELOPE(-63.667,-63.667,-64.317,-64.317)