Coupled multilayer canopy-permafrost model (CryoGrid) for the use with an individual-based larch vegetation simulator (LAVESI)

CryoGrid is a land-surface scheme dedicated to modeling of ground temperatures in permafrost environments. Here, the one-dimensional land surface model (CryoGrid) is adapted for application in vegetated areas by coupling a multilayer canopy model (CLM-ml v0). This model setup is used to reproduce th...

Full description

Bibliographic Details
Main Authors: Stuenzi, Simone Maria, Kruse, Stefan, Boike, Julia, Herzschuh, Ulrike, Westermann, Sebastian, Langer, Moritz
Format: Article in Journal/Newspaper
Language:English
Published: Zenodo 2021
Subjects:
Ice
Online Access:https://dx.doi.org/10.5281/zenodo.5119986
https://zenodo.org/record/5119986
id ftdatacite:10.5281/zenodo.5119986
record_format openpolar
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language English
topic Permafrost
Land surface model
CryoGrid
Lavesi
Boreal forest
spellingShingle Permafrost
Land surface model
CryoGrid
Lavesi
Boreal forest
Stuenzi, Simone Maria
Kruse, Stefan
Boike, Julia
Herzschuh, Ulrike
Westermann, Sebastian
Langer, Moritz
Coupled multilayer canopy-permafrost model (CryoGrid) for the use with an individual-based larch vegetation simulator (LAVESI)
topic_facet Permafrost
Land surface model
CryoGrid
Lavesi
Boreal forest
description CryoGrid is a land-surface scheme dedicated to modeling of ground temperatures in permafrost environments. Here, the one-dimensional land surface model (CryoGrid) is adapted for application in vegetated areas by coupling a multilayer canopy model (CLM-ml v0). This model setup is used to reproduce the energy transfer and thermal regime at a study site in mixed boreal forest in Eastern Siberia. The vegetation module forms the upper boundary layer of the coupled vegetation-permafrost model and replaces the surface energy balance equation used for common CryoGrid representations. The coupled model was first described in the following article which has been published in Biogeosciences: Stuenzi, S. M., Boike, J., Cable, W., Herzschuh, U., Kruse, S., Pestryakova, L. A., Schneider von Deimling, T., Westermann, S., Zakharov, E. S., and Langer, M.: Variability of the surface energy balance in permafrost-underlain boreal forest, Biogeosciences , 18, 343–365, https://doi.org/10.5194/bg-18-343-2021, 2021. The model code for this publication can be found here: https://doi.org/10.5281/zenodo.4317106 In a second publication, the model has been extended by a parameterization for deciduous forest to simulate the leafless state of deciduous-dominated regions outside of the short vegetative period in summer. A more realistic canopy structure is simulated by allowing fractional composition of deciduous and evergreen taxa within the simulated forest stand. Further, we have implemented a new relationship for phase partitioning of water in frozen soil (freeze curve): Stuenzi, S. M., Boike, J., Gädeke, A., Herzschuh, U., Kruse, S., Pestryakova, L. A., Westermann, S., and Langer, M. (2021). Sensitivity of ecosystem-protected permafrost under changing boreal forest structures. Environmental Research Letters, 16(8), 084045. https://doi.org/10.1088/1748-9326/AC153D. The model code for this publication can be found here: https://doi.org/10.5281/zenodo.4603668. Here, we have added the possibility to couple our model to a dynamic larch vegetation simulator (LAVESI). LAVESI is publicly available on GitHub at https://github.com/StefanKruse/LAVESI the branch used for this study is https://github.com/StefanKruse/LAVESI/tree/CryoGrid_multispecies and the commit used for the simulations for this study is 93a9767. The final commit will be permanently stored on Zenodo. The parameters are set to the default values that were used for the simulations in the article. Parameters different from the default values can be specified in the main script run_CG_RUN_1D_STANDARD.m (general parameters, run number, etc.) and in the excel table \results\test_vegetation_snow_1\ test_vegetation_snow_1.xlsx (run-specific parameters). To start the program, run the script run_CG_RUN_1D_STANDARD.m . The default output directory is .\results\. Further updates to the model code can be found here: https://github.com/CryoGrid/CryoGrid/tree/vegetation Updates and documentation of the Permafrost model CryoGrid can be found here: https://github.com/CryoGrid. The model is further described in this publication: Westermann, S., Langer, M., Boike, J., Heikenfeld, M., Peter, M., Etzelmüller, B., & Krinner, G. (2016). Simulating the thermal regime and thaw processes of ice-rich permafrost ground with the land-surface model CryoGrid 3. Geosci. Model Dev. , 9(2), 523–546. https://doi.org/10.5194/gmd-9-523-2016. The multilayer canopy model was first published by Bonan et al. (2018) : Bonan, G. B., Patton, E. G., Harman, I. N., Oleson, K. W., Finnigan, J. J., Lu, Y., and Burakowski, E. A.: Modeling canopy-induced turbulence in the Earth system: a unified parameterization of turbulent exchange within plant canopies and the roughness sublayer (CLM-ml v0), Geosci. Model Dev. , 11, 1467–1496, https://doi.org/10.5194/gmd-11-1467-2018, 2018. : {"references": ["Stuenzi, S. M., Boike, J., Cable, W., Herzschuh, U., Kruse, S., Pestryakova, L. A., Schneider von Deimling, T., Westermann, S., Zakharov, E. S., and Langer, M.: Variability of the surface energy balance in permafrost-underlain boreal forest, Biogeosciences, 18, 343\u2013365, https://doi.org/10.5194/bg-18-343-2021, 2021. The model code for this publication can be found here: https://doi.org/10.5281/zenodo.4317106", "Westermann, S., Langer, M., Boike, J., Heikenfeld, M., Peter, M., Etzelm\u00fcller, B., & Krinner, G. (2016). Simulating the thermal regime and thaw processes of ice-rich permafrost ground with the land-surface model CryoGrid 3.\u00a0Geosci. Model Dev., 9(2), 523\u2013546.\u00a0https://doi.org/10.5194/gmd-9-523-2016.", "Bonan, G. B., Patton, E. G., Harman, I. N., Oleson, K. W., Finnigan, J. J., Lu, Y., and Burakowski, E. A.: Modeling canopy-induced turbulence in the Earth system: a unified parameterization of turbulent exchange within plant canopies and the roughness sublayer (CLM-ml v0), Geosci. Model Dev., 11, 1467\u20131496, https://doi.org/10.5194/gmd-11-1467-2018, 2018.", "Stuenzi, S.M., Boike, J., G\u00e4decke, A., Herzschuh, U., Kruse, S., Pestryakova, L.A., Westermann, S., Langer, M. (2021). Sensitivity of ecosystem-protected permafrost under changing boreal forest structures. Environmental Research Letters. https://doi.org/10.1088/1748-9326/ac153d"]}
format Article in Journal/Newspaper
author Stuenzi, Simone Maria
Kruse, Stefan
Boike, Julia
Herzschuh, Ulrike
Westermann, Sebastian
Langer, Moritz
author_facet Stuenzi, Simone Maria
Kruse, Stefan
Boike, Julia
Herzschuh, Ulrike
Westermann, Sebastian
Langer, Moritz
author_sort Stuenzi, Simone Maria
title Coupled multilayer canopy-permafrost model (CryoGrid) for the use with an individual-based larch vegetation simulator (LAVESI)
title_short Coupled multilayer canopy-permafrost model (CryoGrid) for the use with an individual-based larch vegetation simulator (LAVESI)
title_full Coupled multilayer canopy-permafrost model (CryoGrid) for the use with an individual-based larch vegetation simulator (LAVESI)
title_fullStr Coupled multilayer canopy-permafrost model (CryoGrid) for the use with an individual-based larch vegetation simulator (LAVESI)
title_full_unstemmed Coupled multilayer canopy-permafrost model (CryoGrid) for the use with an individual-based larch vegetation simulator (LAVESI)
title_sort coupled multilayer canopy-permafrost model (cryogrid) for the use with an individual-based larch vegetation simulator (lavesi)
publisher Zenodo
publishDate 2021
url https://dx.doi.org/10.5281/zenodo.5119986
https://zenodo.org/record/5119986
long_lat ENVELOPE(130.617,130.617,64.650,64.650)
geographic Zakharov
geographic_facet Zakharov
genre Ice
permafrost
Siberia
genre_facet Ice
permafrost
Siberia
op_relation https://github.com/CryoGrid/CryoGrid/tree/vegetation
https://github.com/StefanKruse/LAVESI/tree/CryoGrid_multispecies
https://github.com/CryoGrid/CryoGrid/tree/vegetation
https://github.com/StefanKruse/LAVESI/tree/CryoGrid_multispecies
https://dx.doi.org/10.5281/zenodo.5119987
op_rights Embargoed Access
Creative Commons Attribution 4.0 International
https://creativecommons.org/licenses/by/4.0/legalcode
cc-by-4.0
info:eu-repo/semantics/embargoedAccess
op_rightsnorm CC-BY
op_doi https://doi.org/10.5281/zenodo.5119986
https://doi.org/10.5281/zenodo.5119987
_version_ 1766027792467623936
spelling ftdatacite:10.5281/zenodo.5119986 2023-05-15T16:37:30+02:00 Coupled multilayer canopy-permafrost model (CryoGrid) for the use with an individual-based larch vegetation simulator (LAVESI) Stuenzi, Simone Maria Kruse, Stefan Boike, Julia Herzschuh, Ulrike Westermann, Sebastian Langer, Moritz 2021 https://dx.doi.org/10.5281/zenodo.5119986 https://zenodo.org/record/5119986 en eng Zenodo https://github.com/CryoGrid/CryoGrid/tree/vegetation https://github.com/StefanKruse/LAVESI/tree/CryoGrid_multispecies https://github.com/CryoGrid/CryoGrid/tree/vegetation https://github.com/StefanKruse/LAVESI/tree/CryoGrid_multispecies https://dx.doi.org/10.5281/zenodo.5119987 Embargoed Access Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode cc-by-4.0 info:eu-repo/semantics/embargoedAccess CC-BY Permafrost Land surface model CryoGrid Lavesi Boreal forest Software SoftwareSourceCode article 2021 ftdatacite https://doi.org/10.5281/zenodo.5119986 https://doi.org/10.5281/zenodo.5119987 2021-11-05T12:55:41Z CryoGrid is a land-surface scheme dedicated to modeling of ground temperatures in permafrost environments. Here, the one-dimensional land surface model (CryoGrid) is adapted for application in vegetated areas by coupling a multilayer canopy model (CLM-ml v0). This model setup is used to reproduce the energy transfer and thermal regime at a study site in mixed boreal forest in Eastern Siberia. The vegetation module forms the upper boundary layer of the coupled vegetation-permafrost model and replaces the surface energy balance equation used for common CryoGrid representations. The coupled model was first described in the following article which has been published in Biogeosciences: Stuenzi, S. M., Boike, J., Cable, W., Herzschuh, U., Kruse, S., Pestryakova, L. A., Schneider von Deimling, T., Westermann, S., Zakharov, E. S., and Langer, M.: Variability of the surface energy balance in permafrost-underlain boreal forest, Biogeosciences , 18, 343–365, https://doi.org/10.5194/bg-18-343-2021, 2021. The model code for this publication can be found here: https://doi.org/10.5281/zenodo.4317106 In a second publication, the model has been extended by a parameterization for deciduous forest to simulate the leafless state of deciduous-dominated regions outside of the short vegetative period in summer. A more realistic canopy structure is simulated by allowing fractional composition of deciduous and evergreen taxa within the simulated forest stand. Further, we have implemented a new relationship for phase partitioning of water in frozen soil (freeze curve): Stuenzi, S. M., Boike, J., Gädeke, A., Herzschuh, U., Kruse, S., Pestryakova, L. A., Westermann, S., and Langer, M. (2021). Sensitivity of ecosystem-protected permafrost under changing boreal forest structures. Environmental Research Letters, 16(8), 084045. https://doi.org/10.1088/1748-9326/AC153D. The model code for this publication can be found here: https://doi.org/10.5281/zenodo.4603668. Here, we have added the possibility to couple our model to a dynamic larch vegetation simulator (LAVESI). LAVESI is publicly available on GitHub at https://github.com/StefanKruse/LAVESI the branch used for this study is https://github.com/StefanKruse/LAVESI/tree/CryoGrid_multispecies and the commit used for the simulations for this study is 93a9767. The final commit will be permanently stored on Zenodo. The parameters are set to the default values that were used for the simulations in the article. Parameters different from the default values can be specified in the main script run_CG_RUN_1D_STANDARD.m (general parameters, run number, etc.) and in the excel table \results\test_vegetation_snow_1\ test_vegetation_snow_1.xlsx (run-specific parameters). To start the program, run the script run_CG_RUN_1D_STANDARD.m . The default output directory is .\results\. Further updates to the model code can be found here: https://github.com/CryoGrid/CryoGrid/tree/vegetation Updates and documentation of the Permafrost model CryoGrid can be found here: https://github.com/CryoGrid. The model is further described in this publication: Westermann, S., Langer, M., Boike, J., Heikenfeld, M., Peter, M., Etzelmüller, B., & Krinner, G. (2016). Simulating the thermal regime and thaw processes of ice-rich permafrost ground with the land-surface model CryoGrid 3. Geosci. Model Dev. , 9(2), 523–546. https://doi.org/10.5194/gmd-9-523-2016. The multilayer canopy model was first published by Bonan et al. (2018) : Bonan, G. B., Patton, E. G., Harman, I. N., Oleson, K. W., Finnigan, J. J., Lu, Y., and Burakowski, E. A.: Modeling canopy-induced turbulence in the Earth system: a unified parameterization of turbulent exchange within plant canopies and the roughness sublayer (CLM-ml v0), Geosci. Model Dev. , 11, 1467–1496, https://doi.org/10.5194/gmd-11-1467-2018, 2018. : {"references": ["Stuenzi, S. M., Boike, J., Cable, W., Herzschuh, U., Kruse, S., Pestryakova, L. A., Schneider von Deimling, T., Westermann, S., Zakharov, E. S., and Langer, M.: Variability of the surface energy balance in permafrost-underlain boreal forest, Biogeosciences, 18, 343\u2013365, https://doi.org/10.5194/bg-18-343-2021, 2021. The model code for this publication can be found here: https://doi.org/10.5281/zenodo.4317106", "Westermann, S., Langer, M., Boike, J., Heikenfeld, M., Peter, M., Etzelm\u00fcller, B., & Krinner, G. (2016). Simulating the thermal regime and thaw processes of ice-rich permafrost ground with the land-surface model CryoGrid 3.\u00a0Geosci. Model Dev., 9(2), 523\u2013546.\u00a0https://doi.org/10.5194/gmd-9-523-2016.", "Bonan, G. B., Patton, E. G., Harman, I. N., Oleson, K. W., Finnigan, J. J., Lu, Y., and Burakowski, E. A.: Modeling canopy-induced turbulence in the Earth system: a unified parameterization of turbulent exchange within plant canopies and the roughness sublayer (CLM-ml v0), Geosci. Model Dev., 11, 1467\u20131496, https://doi.org/10.5194/gmd-11-1467-2018, 2018.", "Stuenzi, S.M., Boike, J., G\u00e4decke, A., Herzschuh, U., Kruse, S., Pestryakova, L.A., Westermann, S., Langer, M. (2021). Sensitivity of ecosystem-protected permafrost under changing boreal forest structures. Environmental Research Letters. https://doi.org/10.1088/1748-9326/ac153d"]} Article in Journal/Newspaper Ice permafrost Siberia DataCite Metadata Store (German National Library of Science and Technology) Zakharov ENVELOPE(130.617,130.617,64.650,64.650)