Estrategias bacterianas para contrarrestar el estrés causado por frío y/o por congelación-descongelación y panorama de tolerancia de las rizobacterias

RESUMEN Las bacterias continuamente se enfrentan a condiciones adversas en el medio ambiente, que representan un factor de estrés y que restringen su supervivencia. Entre esos factores se encuentran: la limitación de agua, las fluctuaciones en la temperatura, los valores extremos de pH, elevadas con...

Full description

Bibliographic Details
Main Authors: Rodríguez-Andrade, Osvaldo, Bernal, Patricia, Martínez-Contreras, Rebeca Débora, Morales-García, Yolanda Elizabeth, Molina-Romero, Dalia, Marín-Cevada, Vianey, Rivera-Urbalejo, América Paulina, Muñoz-Rojas, Jesús
Format: Text
Language:Spanish
Published: Zenodo 2018
Subjects:
Ice
Online Access:https://dx.doi.org/10.5281/zenodo.5089202
https://zenodo.org/record/5089202
Description
Summary:RESUMEN Las bacterias continuamente se enfrentan a condiciones adversas en el medio ambiente, que representan un factor de estrés y que restringen su supervivencia. Entre esos factores se encuentran: la limitación de agua, las fluctuaciones en la temperatura, los valores extremos de pH, elevadas concentraciones de sales, la exposición a radiación ultravioleta, etc. La presente revisión se centra en examinar las estrategias utilizadas por bacterias pertenecientes a diferentes géneros para enfrentar el estrés causado por bajas temperaturas y por ciclos repetidos de congelación-descongelación; condiciones que ocurren con frecuencia en algunos ambientes. Los estudios de tolerancia bacteriana a congelación-descongelación aún son escasos, pero podrían ser de gran relevancia para el incremento de la supervivencia de bacterias promotoras del crecimiento de plantas bajo condiciones extremas de frío. ABSTRACT Bacteria continually face adverse conditions in the environment, which represent a stress factor and restrict their survival. These factors include water limitation, temperature fluctuations, extreme pH values, high salt concentrations, exposure to ultraviolet radiation, etc. This review focuses on examining the strategies used by bacteria belonging to different genus to cope with the stress caused by low temperatures and by repeated freeze-thaw cycles; conditions that occur frequently in some environments. Bacterial freeze-thaw tolerance studies are still scarce but could be of great relevance for increasing the survival of plant growth promoting bacteria under extreme cold conditions. : {"references": ["S\u00e1nchez-Leal LC, Corrales-Ram\u00edrez LC. Congelaci\u00f3n bacteriana: Factores que intervienen en el proceso. Nova. 2005;3(3): 109-13.", "Zhang J, Du GC, Zhang Y, Liao XY, Wang M, L\u00a1 Y, et al. Glutathione protects Lactobacillus sanfranciscensis against freeze-thawing, freeze- drying, and coid treatment. Appl Environ Microbiol. 2010;76(9): 2989-96.", "Trevors JT, Bej AK, Mojib N, van Elsas JD, van Overbeek L. Bacterial gene expression at low temperaturas. Extremophiles. 2012; 16(2): 167-76.", "Walker VK, Palmer GR, Voordouw G. Freeze- thaw tolerance and clues to the winter survival of a soil community. Appl Environ Microbiol. 2006;72(3): 1784-92.", "Sharma S, Szele Z, Schilling R, Munch JC, Schloter M. Influence of freeze-thaw stress on the structure and function of microbial communities and denitrifying populations in soil. Appl Environ Microbiol. 2006;72(3):2148-54.", "Sawicka JE, Robador A, Hubert C, Jprgensen BB, Br\u00fcchert V. Effects of freeze-thaw cycles on anaerobic microbial processes in an Arctic intertidal mud f\u00edat. ISME J. 2010;4(4):585-94", "Sleight SC, Wigginton NS, Lenski RE. Increased susceptibility to repeated freeze-thaw cycles in Escherichia coli following long-term evolution in a benign environment. BMC Evol Biol. 2006;6:1-8.", "Azizoglu RO, Osborne J, Wilson S, Kathariou S. Role of growth temperatura in freeze-thaw tolerance of Listeria spp. Appl Environ Microbiol. 2009;75(16):5315-20.", "Mu\u00f1oz-Rojas J, Bernal P, Duque E, Godoy P, Segura A, Ramos JL. Involvement of cydopropane fatty acids in the response of Pseudomonas putida KT2440 to freeze-drying. Appl Environ Microbiol. 2006 Jan;72(l):472-7.", "Morales-Garc\u00eda Y-E, Duque E, Rodr\u00edguez- Andrade O, de la Torre J, Mart\u00ednez-Contreras R-D, P\u00e9rez R, et al. Bacterias preservadas , una fuente importante de recursos biotecnol\u00f3gicos. Bio Tecnol. 2010; 14(2): 11-29.", "Palmfeldt J, R\u00e1dstr\u00f3m P, Hahn-H\u00e1gerdal B. Optimisation of initial cell concentration enhances freeze-drying tolerance of Pseudomonas chlororaphis. Cryobiology. 2003;47(l):21-9.", "Hub\u00e1lek Z. Protectants used in the cryopreservation of microorganisms. Cryobiology. 2003;46(3):205-29.", "Bernal P, Mu\u00f1oz-Rojas J, Hurtado A, Ramos JL, Segura A. A Pseudomonas putida cardiolipin synthesis mutant exhibits increased sensitivity to drugs related to transport functionality. Environ Microbiol. 2007 May;9(5): 1135-5.", "Gautier J, Passot S, P\u00e9nicaud C, Guillemin H, Cenard S, Lieben P, et al. A low membrane lipid 8. phase transition temperature is associated with a high cryotolerance of Lactobacillus delbrueck\u00fc subspecies bulgaricus CFL1. J Dairy Sci. 2013;96(9):5591-602.", "Wang Y, Delettre J, Corrieu G, B\u00e9al C. Starvation induces physiological changes that act on the cryotolerance of Lactobacillus acidophilus RD758. Biotechnol Prog. 2011;27(2):342-50.", "Whiteford DC, Klingelhoets JJ, Bambenek MH, Dahl JL. Deletion of the histone-like protein (Hlp) from Mycobacterium smegmatis results in increased sensitivity to UV exposure, freezing and isoniazid. Microbiology. 2011;157(2):327-35.", "Vivanco-Calixto R, Molina-Romero D, Morales-Garc\u00eda YE, Quintero-Hern\u00e1ndez V, Munive-Hern\u00e1ndez A, Baez-Rogelio A, et al. Reto agrobiotecnol\u00f3gico: inoculantes bacterianos de segunda generaci\u00f3n. Alianzas y Tendencias. 2016;l(April):9-19.", "Cleland D, Krader P, McCree C, Tang J, Emerson D. Glycine betaine as a cryoprotectant for prokaryotes. J Microbiol Methods. 2004;58(l):31-8.", "Duong T, Barrangou R, Russell WM, Klaenhammer TR. Characterization of the tre locus and analysis of trehalose cryoprotection in Lactobacillus acidophilus NCFM. Appl Environ Microbiol. 2006;72(2): 1218-25.", "Kawahara H. The structures and functions of \u00a1ce crystal-controlling proteins from bacteria. J Biosci Bioeng. 2002;94(6):492-6.", "Cui S, Hang F, Liu X, Xu Z, Liu Z, Zhao J, et al. Effect of acids produced from carbohydrate metabolism in cryoprotectants on the viability of freeze-dried Lactobacillus and prediction of optima initial cell concentration. J Biosci Bioeng. 2018; In Press: 1-6.", "Braslavsky I, Drori R. LabVIEW-operated Novel Nanoliter Osmometer for Ice Binding Protein 8. Investigations. J Vis Exp. 2013;(72):e4189.", "Achberger AM, Brox TI, Skidmore ML, Christner BC. Expression and pardal characterization of an ice-binding protein from a bacterium isolated at a depth of 3 , 519 m in the Vostok ice core , Ant\u00e1rctica. Front Microbiol. 2011;2(December):l-8.", "Gilbert JA, Hill PJ, Dodd CER, Laybourn-parry J, Gilbert JA. Demonstration of antifreeze protein activity in Antarctic lake bacteria. Microbiology. 2004;150:171-80.", "Celik Y, Graham LA, Mok Y-F, Bar M, Davies PL, Braslavsky I. Superheating of \u00a1ce crystals in antifreeze protein Solutions. Proc Nati Acad Sci. 2010;107(12):5423-8.", "Guo S, Garnham CP, Whitney JC, Graham LA, Davies PL. Re-evaluation of a bacterial antifreeze protein as an adhesin with ice-binding activity. PLoS One. 2012)7(1 l):e48805.", "Kawahara H, Higa S, Tatsukawa H, Obata H. Cryoprotection and cryostrilization effect of type I antifreeze protein on E.coli cells. Biocontrol Sci. 2009; 14(2) :49-54.", "Garnham CP, Campbell RL, Walker VK, Davies PL. Novel dimeric 0-helical model of an \u00a1ce nucleation protein with bridged active sites. BMC Struct Biol. 201 l)ll(September): 1-11.", "Wu Z, Kan FWK, She Y-M, Walker VK. Biofilm, ice recrystallization inhibition and freeze-thaw 8. protection in an epiphyte community. Appl Biochem Microbiol. 2012;48(4):363-70.", "Liu SB, Chen XL, He HL, Zhang XY, Xie B Bin, Yu Y, et al. Structure and ecological roles of a novel exopolysaccharide from the Arctic sea \u00a1ce bacterium Pseudoalteromonas sp. strain SM20310. Appl Environ Microbiol. 2013;79(l):224-30.", "KIm SJ, Yim H. Cryoprotective properties of exopolysaccharide (P-21653) produced by the Antarctic bacterium, Pseudoalteromonas \u00e1rctica KOPRI 21653. J Microbiol. 2007;45(6):510.", "Vu B, Chen M, Crawford RJ, Ivanova EP. Bacterial extracellular polysaccharides involved in biofilm formation. Molecules. 2009; 14(7):2535-54.", "Tribelli P, L\u00f3pez N. Reporting key features in cold-adapted bacteria. Life. 2018;8(l):8.", "Amato P, Christner BC. Energy metabolism response to low-temperature and frozen conditions in Psychrobacter cryohalolentis. Appl Environ Microbiol. 2009;75(3):711-8.", "Kuhn E. Toward understanding life under subzero conditions: the significance of exploring psychrophilic \"cold-shock\" proteins. Astrobiology. 2012;12(ll):1078-86.", "Drotz SH, Sparrman T, Nilsson MB, Schleucher J, Oquist MG. Both catabolic and anabolic heterotrophic microbial activity proceed in frozen soils. Proc Nati Acad Sci. 2010;107(49):21046-51.", "Ayala-Del-R\u00edo HL, Chain PS, Grzymski JJ, Ponder MA, Ivanova N, Bergholz PW, et al. The genome sequence of psychrobacter arcticus 273-4, a psychroactive siberian permafrost bacterium, reve\u00e1is mechanisms for adaptation to low-temperature growth. Appl Environ Microbiol. 2010;76(7):2304\u201412.", "Miladi H, Soukri A, Bakhrouf A, Ammar E. Expression of ferritin-like protein in Listeria monocytogenes after coid and freezing stress. Folia Microbiol (Praha). 2012;57(6):551-6.", "Varin T, Lovejoy C, Jungblut AD, Vincent WF, Corbeil J. Metagenomic analysis of stress genes in microbial mat communities from Ant\u00e1rctica and the high Arctic. Appl Environ Microbiol. 2012;78(2):549- 59.", "Molina-Romero D, Bustillos-Cristales M del R, Rodr\u00edguez-Andrade O, Morales-Garc\u00eda YE, Santiago- Saenz Y, Casta\u00f1eda-Lucio M, et al. Mecanismos de fitoestimulaci\u00f3n por rizobacterias , aislamientos en Am\u00e9rica y potencial biotecnolog\u00eda). Biol\u00f3gicas. 2015;17(2):24-34.", "Morley CR, Trofymow JA, Coleman DC, Cambardella C. Effects of freeze-thaw stress on bacterial populations in soil microcosms. Microb Ecol. 1983;9(4): 329-40.", "Sun X, Griffith M, Pasternak JJ, Glick R. Low temperature growth, freezing survival, and production of antifreeze protein by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol. 1995;41(9):776-84.", "Wilson SL, Kelley DL, Walker VK. Ice-active characteristics of soil bacteria selected by ice- affinity. Environ Microbiol. 2006;8(10): 1816-24.", "Teixeira LCRS, Peixoto RS, Rosado AS. Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay in maritime Ant\u00e1rctica. Mol Microb Ecol Rhizosph. 2013;2(8): 1105-12.", "Potts M. Desiccation tolerance: a simple process? Trends Microbiol. 2001;9(ll):553-9.", "Alpert P. Constraints of tolerance: why are desiccation-tolerant organisms so small or rare? J Exp Biol. 2006;209:1575-84.", "Alpert P. The limits and frontiers of desiccation-tolerant life. Integr Comp Biol. 2005;45(5):685-95."]}