Sea-Ice Data Content Representation Based on Latent Dirichlet Allocation for Belgica Bank in Greenland
Data description File type : -.npy (python numpy file) File content: Each file is a numpy array of size (number of 256x256 patches, 4096) indexed by id of the patch (each scene contains 6,400 patches, each patch has 4,096 micropatches of size 4x4, assigned one topic [1] per micropatch, resulting in...
Main Authors: | , , |
---|---|
Format: | Dataset |
Language: | English |
Published: |
Zenodo
2021
|
Subjects: | |
Online Access: | https://dx.doi.org/10.5281/zenodo.5075860 https://zenodo.org/record/5075860 |
id |
ftdatacite:10.5281/zenodo.5075860 |
---|---|
record_format |
openpolar |
spelling |
ftdatacite:10.5281/zenodo.5075860 2023-05-15T16:29:03+02:00 Sea-Ice Data Content Representation Based on Latent Dirichlet Allocation for Belgica Bank in Greenland Karmakar Chandrabali Octavian, Dumitru Datcu Mihai 2021 https://dx.doi.org/10.5281/zenodo.5075860 https://zenodo.org/record/5075860 en eng Zenodo https://zenodo.org/communities/polarops https://dx.doi.org/10.1109/jstars.2020.3039012 https://dx.doi.org/10.5281/zenodo.5075861 https://zenodo.org/communities/polarops Open Access Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode cc-by-4.0 info:eu-repo/semantics/openAccess CC-BY Latent Dirichlet Allocation, Topics, Sentinel-1 dataset Dataset 2021 ftdatacite https://doi.org/10.5281/zenodo.5075860 https://doi.org/10.1109/jstars.2020.3039012 https://doi.org/10.5281/zenodo.5075861 2021-11-05T12:55:41Z Data description File type : -.npy (python numpy file) File content: Each file is a numpy array of size (number of 256x256 patches, 4096) indexed by id of the patch (each scene contains 6,400 patches, each patch has 4,096 micropatches of size 4x4, assigned one topic [1] per micropatch, resulting in 4,096 topics per patch). Each file has 4 months of observation. Array size is 25600 x 4096. We provide 6 files containing 24 months of observation (see the excel file for the Sentinel-1 ids) [2]. Software to open with: Python Example code: import numpy Data= numpy.load(“filename_with_path”) Reference: 1. C. Karmakar, C.O. Dumitru, G. Schwarz, and M. Datcu, “ Feature-Free Explainable Data Mining in SAR Images Using Latent Dirichlet Allocation ”, IEEE JSTARS, vol. 14, pp. 676-689, 2021. 2. C. Karmakar, C.O. Dumitru, and M. Datcu, “Explainable AI for SAR Image Time Series: Knowledge Extraction for Polar Areas”, MDPI Remote Sensing Journal, 2021, pp. 1-21 (under review). Dataset Greenland Sea ice DataCite Metadata Store (German National Library of Science and Technology) Belgica Bank ENVELOPE(-15.000,-15.000,78.467,78.467) Greenland The Sentinel ENVELOPE(73.317,73.317,-52.983,-52.983) |
institution |
Open Polar |
collection |
DataCite Metadata Store (German National Library of Science and Technology) |
op_collection_id |
ftdatacite |
language |
English |
topic |
Latent Dirichlet Allocation, Topics, Sentinel-1 |
spellingShingle |
Latent Dirichlet Allocation, Topics, Sentinel-1 Karmakar Chandrabali Octavian, Dumitru Datcu Mihai Sea-Ice Data Content Representation Based on Latent Dirichlet Allocation for Belgica Bank in Greenland |
topic_facet |
Latent Dirichlet Allocation, Topics, Sentinel-1 |
description |
Data description File type : -.npy (python numpy file) File content: Each file is a numpy array of size (number of 256x256 patches, 4096) indexed by id of the patch (each scene contains 6,400 patches, each patch has 4,096 micropatches of size 4x4, assigned one topic [1] per micropatch, resulting in 4,096 topics per patch). Each file has 4 months of observation. Array size is 25600 x 4096. We provide 6 files containing 24 months of observation (see the excel file for the Sentinel-1 ids) [2]. Software to open with: Python Example code: import numpy Data= numpy.load(“filename_with_path”) Reference: 1. C. Karmakar, C.O. Dumitru, G. Schwarz, and M. Datcu, “ Feature-Free Explainable Data Mining in SAR Images Using Latent Dirichlet Allocation ”, IEEE JSTARS, vol. 14, pp. 676-689, 2021. 2. C. Karmakar, C.O. Dumitru, and M. Datcu, “Explainable AI for SAR Image Time Series: Knowledge Extraction for Polar Areas”, MDPI Remote Sensing Journal, 2021, pp. 1-21 (under review). |
format |
Dataset |
author |
Karmakar Chandrabali Octavian, Dumitru Datcu Mihai |
author_facet |
Karmakar Chandrabali Octavian, Dumitru Datcu Mihai |
author_sort |
Karmakar Chandrabali |
title |
Sea-Ice Data Content Representation Based on Latent Dirichlet Allocation for Belgica Bank in Greenland |
title_short |
Sea-Ice Data Content Representation Based on Latent Dirichlet Allocation for Belgica Bank in Greenland |
title_full |
Sea-Ice Data Content Representation Based on Latent Dirichlet Allocation for Belgica Bank in Greenland |
title_fullStr |
Sea-Ice Data Content Representation Based on Latent Dirichlet Allocation for Belgica Bank in Greenland |
title_full_unstemmed |
Sea-Ice Data Content Representation Based on Latent Dirichlet Allocation for Belgica Bank in Greenland |
title_sort |
sea-ice data content representation based on latent dirichlet allocation for belgica bank in greenland |
publisher |
Zenodo |
publishDate |
2021 |
url |
https://dx.doi.org/10.5281/zenodo.5075860 https://zenodo.org/record/5075860 |
long_lat |
ENVELOPE(-15.000,-15.000,78.467,78.467) ENVELOPE(73.317,73.317,-52.983,-52.983) |
geographic |
Belgica Bank Greenland The Sentinel |
geographic_facet |
Belgica Bank Greenland The Sentinel |
genre |
Greenland Sea ice |
genre_facet |
Greenland Sea ice |
op_relation |
https://zenodo.org/communities/polarops https://dx.doi.org/10.1109/jstars.2020.3039012 https://dx.doi.org/10.5281/zenodo.5075861 https://zenodo.org/communities/polarops |
op_rights |
Open Access Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode cc-by-4.0 info:eu-repo/semantics/openAccess |
op_rightsnorm |
CC-BY |
op_doi |
https://doi.org/10.5281/zenodo.5075860 https://doi.org/10.1109/jstars.2020.3039012 https://doi.org/10.5281/zenodo.5075861 |
_version_ |
1766018736209264640 |