Snow Variables for High Mountain Asia

Data associated with the paper: Smith T and Bookhagen B (2020) Assessing Multi-Temporal Snow-Volume Trends in High Mountain Asia From 1987 to 2016 Using High-Resolution Passive Microwave Data. Front. Earth Sci. 8:559175. doi: 10.3389/feart.2020.559175 ( https://doi.org/10.3389/feart.2020.559175 ) Th...

Full description

Bibliographic Details
Main Authors: Smith, Taylor, Bookhagen, Bodo
Format: Dataset
Language:unknown
Published: Zenodo 2020
Subjects:
Online Access:https://dx.doi.org/10.5281/zenodo.3898517
https://zenodo.org/record/3898517
id ftdatacite:10.5281/zenodo.3898517
record_format openpolar
spelling ftdatacite:10.5281/zenodo.3898517 2023-05-15T17:14:20+02:00 Snow Variables for High Mountain Asia Smith, Taylor Bookhagen, Bodo 2020 https://dx.doi.org/10.5281/zenodo.3898517 https://zenodo.org/record/3898517 unknown Zenodo https://dx.doi.org/10.5281/zenodo.3898516 Open Access Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode cc-by-4.0 info:eu-repo/semantics/openAccess CC-BY Snow, Asia, Snow-Water Equivalent dataset Dataset 2020 ftdatacite https://doi.org/10.5281/zenodo.3898517 https://doi.org/10.5281/zenodo.3898516 2021-11-05T12:55:41Z Data associated with the paper: Smith T and Bookhagen B (2020) Assessing Multi-Temporal Snow-Volume Trends in High Mountain Asia From 1987 to 2016 Using High-Resolution Passive Microwave Data. Front. Earth Sci. 8:559175. doi: 10.3389/feart.2020.559175 ( https://doi.org/10.3389/feart.2020.559175 ) This data resource contains one NetCDF file containing high-resolution (3.125km) snow-water equivalent and snow-cover parameters. The named datasets within the NetCDF file are: Annual_SWE_Trend_1987-2016 - Annual average snow-water equivalent trend (1987-2016) DJF_SWE_Trend_1987-2016 - December-January-February average snow-water equivalent trend (1987-2016) MAM_SWE_Trend_1987-2016 - March-April-May average snow-water equivalent trend (1987-2016) JJA_SWE_Trend_1987-2016 - June-July-August average snow-water equivalent trend (1987-2016) SON_SWE_Trend_1987-2016 - September-October-November average snow-water equivalent trend (1987-2016) Annual_SWE_Trend_1987-1997 - Annual average snow-water equivalent trend (1987-1997) Annual_SWE_Trend_1997-2007 - Annual average snow-water equivalent trend (1997-2007) Annual_SWE_Trend_2006-2016 - Annual average snow-water equivalent trend (2006-2016) Annual_Average_SWE - Annual average snow-water equivalent (1987-2016) DJF_Average_SWE - December-January-February average snow-water equivalent (1987-2016) MAM_Average_SWE - March-April-May average snow-water equivalent (1987-2016) JJA_Average_SWE - June-July-August average snow-water equivalent (1987-2016) SON_Average_SWE - September-October-November average snow-water equivalent (1987-2016) Annual_Average_SCA - Annual average snow-covered area (2001-2019) DJF_Average_SCA - December-January-February average snow-covered area (2001-2019) MAM_Average_SCA - March-April-May average snow-covered area (2001-2019) JJA_Average_SCA - June-July-August average snow-covered area (2001-2019) SON_Average_SCA - September-October-November average snow-covered area (2001-2019) The NetCDF file also contains projected x/y coordinates in EASEgrid 2.0, as well as relevant geographic and projection parameters. These data provide high-resolution averages and trends of key snow parameters for analyzing climate change in High Mountain Asia. The underlying data sources are: Brodzik, M. J., D. G. Long, M. A. Hardman, A. Paget, and R. Armstrong. 2016, Updated 2020. MEaSUREs Calibrated Enhanced-Resolution Passive Microwave Daily EASE-Grid 2.0 Brightness Temperature ESDR, Version 1. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. doi: https://doi.org/10.5067/MEASURES/CRYOSPHERE/NSIDC-0630.001. and: Hall, D. K. and G. A. Riggs. 2016. MODIS/Terra Snow Cover Daily L3 Global 500m SIN Grid, Version 6. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. doi: https://doi.org/10.5067/MODIS/MOD10A1.006. Quick python script for converting to GeoTIFF: import xarray as xr import rioxarray ds = xr.open_dataset('SWE_Variables_HMA.nc') save_loc = 'Annual_SWE_Trend.tif' da = ds['Annual_SWE_Trend_1987-2016'] da = da.rio.set_crs(ds.crs) da.rio.to_raster(save_loc) Dataset National Snow and Ice Data Center DataCite Metadata Store (German National Library of Science and Technology)
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language unknown
topic Snow, Asia, Snow-Water Equivalent
spellingShingle Snow, Asia, Snow-Water Equivalent
Smith, Taylor
Bookhagen, Bodo
Snow Variables for High Mountain Asia
topic_facet Snow, Asia, Snow-Water Equivalent
description Data associated with the paper: Smith T and Bookhagen B (2020) Assessing Multi-Temporal Snow-Volume Trends in High Mountain Asia From 1987 to 2016 Using High-Resolution Passive Microwave Data. Front. Earth Sci. 8:559175. doi: 10.3389/feart.2020.559175 ( https://doi.org/10.3389/feart.2020.559175 ) This data resource contains one NetCDF file containing high-resolution (3.125km) snow-water equivalent and snow-cover parameters. The named datasets within the NetCDF file are: Annual_SWE_Trend_1987-2016 - Annual average snow-water equivalent trend (1987-2016) DJF_SWE_Trend_1987-2016 - December-January-February average snow-water equivalent trend (1987-2016) MAM_SWE_Trend_1987-2016 - March-April-May average snow-water equivalent trend (1987-2016) JJA_SWE_Trend_1987-2016 - June-July-August average snow-water equivalent trend (1987-2016) SON_SWE_Trend_1987-2016 - September-October-November average snow-water equivalent trend (1987-2016) Annual_SWE_Trend_1987-1997 - Annual average snow-water equivalent trend (1987-1997) Annual_SWE_Trend_1997-2007 - Annual average snow-water equivalent trend (1997-2007) Annual_SWE_Trend_2006-2016 - Annual average snow-water equivalent trend (2006-2016) Annual_Average_SWE - Annual average snow-water equivalent (1987-2016) DJF_Average_SWE - December-January-February average snow-water equivalent (1987-2016) MAM_Average_SWE - March-April-May average snow-water equivalent (1987-2016) JJA_Average_SWE - June-July-August average snow-water equivalent (1987-2016) SON_Average_SWE - September-October-November average snow-water equivalent (1987-2016) Annual_Average_SCA - Annual average snow-covered area (2001-2019) DJF_Average_SCA - December-January-February average snow-covered area (2001-2019) MAM_Average_SCA - March-April-May average snow-covered area (2001-2019) JJA_Average_SCA - June-July-August average snow-covered area (2001-2019) SON_Average_SCA - September-October-November average snow-covered area (2001-2019) The NetCDF file also contains projected x/y coordinates in EASEgrid 2.0, as well as relevant geographic and projection parameters. These data provide high-resolution averages and trends of key snow parameters for analyzing climate change in High Mountain Asia. The underlying data sources are: Brodzik, M. J., D. G. Long, M. A. Hardman, A. Paget, and R. Armstrong. 2016, Updated 2020. MEaSUREs Calibrated Enhanced-Resolution Passive Microwave Daily EASE-Grid 2.0 Brightness Temperature ESDR, Version 1. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. doi: https://doi.org/10.5067/MEASURES/CRYOSPHERE/NSIDC-0630.001. and: Hall, D. K. and G. A. Riggs. 2016. MODIS/Terra Snow Cover Daily L3 Global 500m SIN Grid, Version 6. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. doi: https://doi.org/10.5067/MODIS/MOD10A1.006. Quick python script for converting to GeoTIFF: import xarray as xr import rioxarray ds = xr.open_dataset('SWE_Variables_HMA.nc') save_loc = 'Annual_SWE_Trend.tif' da = ds['Annual_SWE_Trend_1987-2016'] da = da.rio.set_crs(ds.crs) da.rio.to_raster(save_loc)
format Dataset
author Smith, Taylor
Bookhagen, Bodo
author_facet Smith, Taylor
Bookhagen, Bodo
author_sort Smith, Taylor
title Snow Variables for High Mountain Asia
title_short Snow Variables for High Mountain Asia
title_full Snow Variables for High Mountain Asia
title_fullStr Snow Variables for High Mountain Asia
title_full_unstemmed Snow Variables for High Mountain Asia
title_sort snow variables for high mountain asia
publisher Zenodo
publishDate 2020
url https://dx.doi.org/10.5281/zenodo.3898517
https://zenodo.org/record/3898517
genre National Snow and Ice Data Center
genre_facet National Snow and Ice Data Center
op_relation https://dx.doi.org/10.5281/zenodo.3898516
op_rights Open Access
Creative Commons Attribution 4.0 International
https://creativecommons.org/licenses/by/4.0/legalcode
cc-by-4.0
info:eu-repo/semantics/openAccess
op_rightsnorm CC-BY
op_doi https://doi.org/10.5281/zenodo.3898517
https://doi.org/10.5281/zenodo.3898516
_version_ 1766071695395782656