Snow Variables for High Mountain Asia
Data associated with the paper: Smith T and Bookhagen B (2020) Assessing Multi-Temporal Snow-Volume Trends in High Mountain Asia From 1987 to 2016 Using High-Resolution Passive Microwave Data. Front. Earth Sci. 8:559175. doi: 10.3389/feart.2020.559175 ( https://doi.org/10.3389/feart.2020.559175 ) Th...
Main Authors: | , |
---|---|
Format: | Dataset |
Language: | unknown |
Published: |
Zenodo
2020
|
Subjects: | |
Online Access: | https://dx.doi.org/10.5281/zenodo.3898517 https://zenodo.org/record/3898517 |
id |
ftdatacite:10.5281/zenodo.3898517 |
---|---|
record_format |
openpolar |
spelling |
ftdatacite:10.5281/zenodo.3898517 2023-05-15T17:14:20+02:00 Snow Variables for High Mountain Asia Smith, Taylor Bookhagen, Bodo 2020 https://dx.doi.org/10.5281/zenodo.3898517 https://zenodo.org/record/3898517 unknown Zenodo https://dx.doi.org/10.5281/zenodo.3898516 Open Access Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode cc-by-4.0 info:eu-repo/semantics/openAccess CC-BY Snow, Asia, Snow-Water Equivalent dataset Dataset 2020 ftdatacite https://doi.org/10.5281/zenodo.3898517 https://doi.org/10.5281/zenodo.3898516 2021-11-05T12:55:41Z Data associated with the paper: Smith T and Bookhagen B (2020) Assessing Multi-Temporal Snow-Volume Trends in High Mountain Asia From 1987 to 2016 Using High-Resolution Passive Microwave Data. Front. Earth Sci. 8:559175. doi: 10.3389/feart.2020.559175 ( https://doi.org/10.3389/feart.2020.559175 ) This data resource contains one NetCDF file containing high-resolution (3.125km) snow-water equivalent and snow-cover parameters. The named datasets within the NetCDF file are: Annual_SWE_Trend_1987-2016 - Annual average snow-water equivalent trend (1987-2016) DJF_SWE_Trend_1987-2016 - December-January-February average snow-water equivalent trend (1987-2016) MAM_SWE_Trend_1987-2016 - March-April-May average snow-water equivalent trend (1987-2016) JJA_SWE_Trend_1987-2016 - June-July-August average snow-water equivalent trend (1987-2016) SON_SWE_Trend_1987-2016 - September-October-November average snow-water equivalent trend (1987-2016) Annual_SWE_Trend_1987-1997 - Annual average snow-water equivalent trend (1987-1997) Annual_SWE_Trend_1997-2007 - Annual average snow-water equivalent trend (1997-2007) Annual_SWE_Trend_2006-2016 - Annual average snow-water equivalent trend (2006-2016) Annual_Average_SWE - Annual average snow-water equivalent (1987-2016) DJF_Average_SWE - December-January-February average snow-water equivalent (1987-2016) MAM_Average_SWE - March-April-May average snow-water equivalent (1987-2016) JJA_Average_SWE - June-July-August average snow-water equivalent (1987-2016) SON_Average_SWE - September-October-November average snow-water equivalent (1987-2016) Annual_Average_SCA - Annual average snow-covered area (2001-2019) DJF_Average_SCA - December-January-February average snow-covered area (2001-2019) MAM_Average_SCA - March-April-May average snow-covered area (2001-2019) JJA_Average_SCA - June-July-August average snow-covered area (2001-2019) SON_Average_SCA - September-October-November average snow-covered area (2001-2019) The NetCDF file also contains projected x/y coordinates in EASEgrid 2.0, as well as relevant geographic and projection parameters. These data provide high-resolution averages and trends of key snow parameters for analyzing climate change in High Mountain Asia. The underlying data sources are: Brodzik, M. J., D. G. Long, M. A. Hardman, A. Paget, and R. Armstrong. 2016, Updated 2020. MEaSUREs Calibrated Enhanced-Resolution Passive Microwave Daily EASE-Grid 2.0 Brightness Temperature ESDR, Version 1. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. doi: https://doi.org/10.5067/MEASURES/CRYOSPHERE/NSIDC-0630.001. and: Hall, D. K. and G. A. Riggs. 2016. MODIS/Terra Snow Cover Daily L3 Global 500m SIN Grid, Version 6. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. doi: https://doi.org/10.5067/MODIS/MOD10A1.006. Quick python script for converting to GeoTIFF: import xarray as xr import rioxarray ds = xr.open_dataset('SWE_Variables_HMA.nc') save_loc = 'Annual_SWE_Trend.tif' da = ds['Annual_SWE_Trend_1987-2016'] da = da.rio.set_crs(ds.crs) da.rio.to_raster(save_loc) Dataset National Snow and Ice Data Center DataCite Metadata Store (German National Library of Science and Technology) |
institution |
Open Polar |
collection |
DataCite Metadata Store (German National Library of Science and Technology) |
op_collection_id |
ftdatacite |
language |
unknown |
topic |
Snow, Asia, Snow-Water Equivalent |
spellingShingle |
Snow, Asia, Snow-Water Equivalent Smith, Taylor Bookhagen, Bodo Snow Variables for High Mountain Asia |
topic_facet |
Snow, Asia, Snow-Water Equivalent |
description |
Data associated with the paper: Smith T and Bookhagen B (2020) Assessing Multi-Temporal Snow-Volume Trends in High Mountain Asia From 1987 to 2016 Using High-Resolution Passive Microwave Data. Front. Earth Sci. 8:559175. doi: 10.3389/feart.2020.559175 ( https://doi.org/10.3389/feart.2020.559175 ) This data resource contains one NetCDF file containing high-resolution (3.125km) snow-water equivalent and snow-cover parameters. The named datasets within the NetCDF file are: Annual_SWE_Trend_1987-2016 - Annual average snow-water equivalent trend (1987-2016) DJF_SWE_Trend_1987-2016 - December-January-February average snow-water equivalent trend (1987-2016) MAM_SWE_Trend_1987-2016 - March-April-May average snow-water equivalent trend (1987-2016) JJA_SWE_Trend_1987-2016 - June-July-August average snow-water equivalent trend (1987-2016) SON_SWE_Trend_1987-2016 - September-October-November average snow-water equivalent trend (1987-2016) Annual_SWE_Trend_1987-1997 - Annual average snow-water equivalent trend (1987-1997) Annual_SWE_Trend_1997-2007 - Annual average snow-water equivalent trend (1997-2007) Annual_SWE_Trend_2006-2016 - Annual average snow-water equivalent trend (2006-2016) Annual_Average_SWE - Annual average snow-water equivalent (1987-2016) DJF_Average_SWE - December-January-February average snow-water equivalent (1987-2016) MAM_Average_SWE - March-April-May average snow-water equivalent (1987-2016) JJA_Average_SWE - June-July-August average snow-water equivalent (1987-2016) SON_Average_SWE - September-October-November average snow-water equivalent (1987-2016) Annual_Average_SCA - Annual average snow-covered area (2001-2019) DJF_Average_SCA - December-January-February average snow-covered area (2001-2019) MAM_Average_SCA - March-April-May average snow-covered area (2001-2019) JJA_Average_SCA - June-July-August average snow-covered area (2001-2019) SON_Average_SCA - September-October-November average snow-covered area (2001-2019) The NetCDF file also contains projected x/y coordinates in EASEgrid 2.0, as well as relevant geographic and projection parameters. These data provide high-resolution averages and trends of key snow parameters for analyzing climate change in High Mountain Asia. The underlying data sources are: Brodzik, M. J., D. G. Long, M. A. Hardman, A. Paget, and R. Armstrong. 2016, Updated 2020. MEaSUREs Calibrated Enhanced-Resolution Passive Microwave Daily EASE-Grid 2.0 Brightness Temperature ESDR, Version 1. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. doi: https://doi.org/10.5067/MEASURES/CRYOSPHERE/NSIDC-0630.001. and: Hall, D. K. and G. A. Riggs. 2016. MODIS/Terra Snow Cover Daily L3 Global 500m SIN Grid, Version 6. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. doi: https://doi.org/10.5067/MODIS/MOD10A1.006. Quick python script for converting to GeoTIFF: import xarray as xr import rioxarray ds = xr.open_dataset('SWE_Variables_HMA.nc') save_loc = 'Annual_SWE_Trend.tif' da = ds['Annual_SWE_Trend_1987-2016'] da = da.rio.set_crs(ds.crs) da.rio.to_raster(save_loc) |
format |
Dataset |
author |
Smith, Taylor Bookhagen, Bodo |
author_facet |
Smith, Taylor Bookhagen, Bodo |
author_sort |
Smith, Taylor |
title |
Snow Variables for High Mountain Asia |
title_short |
Snow Variables for High Mountain Asia |
title_full |
Snow Variables for High Mountain Asia |
title_fullStr |
Snow Variables for High Mountain Asia |
title_full_unstemmed |
Snow Variables for High Mountain Asia |
title_sort |
snow variables for high mountain asia |
publisher |
Zenodo |
publishDate |
2020 |
url |
https://dx.doi.org/10.5281/zenodo.3898517 https://zenodo.org/record/3898517 |
genre |
National Snow and Ice Data Center |
genre_facet |
National Snow and Ice Data Center |
op_relation |
https://dx.doi.org/10.5281/zenodo.3898516 |
op_rights |
Open Access Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode cc-by-4.0 info:eu-repo/semantics/openAccess |
op_rightsnorm |
CC-BY |
op_doi |
https://doi.org/10.5281/zenodo.3898517 https://doi.org/10.5281/zenodo.3898516 |
_version_ |
1766071695395782656 |