Pyritonema villosa Wisshak 2017, isp. nov.

Pyrodendrina villosa isp. nov. urn:lsid:zoobank.org:act: 1365F057-8115-4FF7-9F0D-48E5C896CECA Fig. 26 Morfotipo B 4 – (?) Mayoral 1988: 306; pl. I, figs 6–7. Sponge form II – Wisshak et al. 2005a: 991, fig. 7B. Semidendrina Form – Wisshak et al. 2005a: 993, fig. 9. Foraminiferan trace – Försterra et...

Full description

Bibliographic Details
Main Author: Wisshak, Max
Format: Text
Language:unknown
Published: Zenodo 2017
Subjects:
Online Access:https://dx.doi.org/10.5281/zenodo.3853711
https://zenodo.org/record/3853711
id ftdatacite:10.5281/zenodo.3853711
record_format openpolar
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language unknown
topic Biodiversity
Taxonomy
Animalia
Porifera
Hexactinellida
Lyssacinosida
Lyssacinosida awaiting allocation
Pyritonema
Pyritonema villosa
spellingShingle Biodiversity
Taxonomy
Animalia
Porifera
Hexactinellida
Lyssacinosida
Lyssacinosida awaiting allocation
Pyritonema
Pyritonema villosa
Wisshak, Max
Pyritonema villosa Wisshak 2017, isp. nov.
topic_facet Biodiversity
Taxonomy
Animalia
Porifera
Hexactinellida
Lyssacinosida
Lyssacinosida awaiting allocation
Pyritonema
Pyritonema villosa
description Pyrodendrina villosa isp. nov. urn:lsid:zoobank.org:act: 1365F057-8115-4FF7-9F0D-48E5C896CECA Fig. 26 Morfotipo B 4 – (?) Mayoral 1988: 306; pl. I, figs 6–7. Sponge form II – Wisshak et al. 2005a: 991, fig. 7B. Semidendrina Form – Wisshak et al. 2005a: 993, fig. 9. Foraminiferan trace – Försterra et al. 2005: 957, fig. 9D–H. non-camerate radiating form – Bromley 2005: 908, fig. 10. Hirsute camerate form – (?) Bromley 2005: 908, fig. 11. Semidendrina -form – Wisshak 2006 (partim): 91, fig. 29C–D. Microsponge-form 2 – Wisshak 2006: 84, fig. 28D. Foraminiferan Form – Beuck et al. 2010 (partim): 467, fig. 8C–D. Clionolithes isp. – (?) Pokorný & Štofik 2016: fig. 11L. Diagnosis Central node of elongate to irregular shape located at shell surface as open channels, with branched and tapered galleries radiating from it, as well as shorter vertical tunnels penetrating deeper into the substrate. Gallery terminations blunt to tapered, ornamented with long, hairy protrusions. Etymology From the Latin ‘villosus’, villous, a reflection of the irregular, furry ornamentation of this trace. Type material, locality and horizon Holotype (Fig. 26 A–D) and a number of additional specimens cast in epoxy from a Lophelia pertusa coral skeleton from the Lindos Bay Formation, Middle Pleistocene, found at isolated hill one km SW of Lardos, Rhodes, Greece. For further details concerning the type locality and its ichnological record, see Titschack et al. (2013) and Wisshak (2008). Deposited in the trace fossil collection of the Senckenberg Institute in Frankfurt, Germany (SMF XXX 866). Description The irregularly-shaped and branched central cavity of this large Pyrodendrina ichnospecies is developed as system of open channels at the substrate surface (Fig. 26A, E–F), while side branches radiating from it may run as tunnels closely parallel to and below the surface. The true extent of the open channels may be uncertain due to collapse of the thin roof of the trace, particularly in taphonomically advanced stages. Anastomoses are rare. The overall outline of the trace may be elongate (Fig. 26G) to more rosetted (Fig. 26 H–I), and the number of lateral branches varies strongly. The cross section of the side branches varies from circular to horizontal flattened or vertically condensed. Gallery terminations are either blunt or tapered. Along the entire central node and the radiating branches, vertically oriented projections may reach deeper into the substrate and taper (Fig. 26D, G). A multitude of spiny protrusions extend deeper into the substrate or form a horizontal extension or contact to the substrate surface in the case of prostrate cavities (Fig. 26C, I). Apart from the hairy ornament, the surface texture is irregularly bulged and in some cases weakly cuspate. Trace diameters measured from epoxy casts of 18 specimens from various localities (see below) yield a maximum length of the trace ranging from 1107 to 3844 µm (mean = 2461 ± 759 µm; measured without peripheral spiny protrusions), and a maximum width of 1005 to 2389 µm (mean = 1601 ± 478 µm). Radiating galleries have diameters of 35 to 245 µm (mean = 99 ± 37 µm; n = 160). The maximum length of the spiny protrusions ranges from 83 to 392 µm (mean = 240 ± 111 µm). Remarks Additional material was investigated from Miocene bivalves from SE Australia, Pleistocene cold water corals sampled in Messina, Sicily, Recent cold water coral reef sites such as Stjernsund and Sula Reef (Norway), Säcken Reef (Sweden), reefs off Santa Maria di Leuca (Italy), and from a subfossil arctic bivalve shell sampled off SW Svalbard. This large ichnospecies of Pyrodendrina is distinguished from other members of the ichnogenus by its development of open channels and by the particularly pronounced spiny surface texture. It has the shortest vertical galleries in relation to the dimension of the horizontal cavity. : Published as part of Wisshak, Max, 2017, Taming an ichnotaxonomical Pandora's box: revision of dendritic and rosetted microborings (ichnofamily: Dendrinidae), pp. 1-99 in European Journal of Taxonomy 390 on pages 66-68, DOI: 10.5852/ejt.2017.390, http://zenodo.org/record/3839858 : {"references": ["Mayoral E. 1988. Microperforaciones (Tallophyta) sobre Bivalvia del Plioceno del Bajo Guadalquivir. Importancia paleoecologica. Estudios Geologicos 44: 301 - 316.", "Wisshak M., Freiwald A., Lundalv T. & Gektidis M. 2005 a. The physical niche of bathyal Lophelia pertusa in a non-bathyal setting: environmental controls and palaeoecological implications. In: Freiwald A. & Roberts J. M. (eds) Cold-Water Corals and Ecosystems: 979 - 1001. Springer, Heidelberg. https: // doi. org / 10.1007 / 3 - 540 - 27673 - 4 _ 49", "Forsterra G., Beuck L., Haussermann V. & Freiwald A. 2005. Shallow-water Desmophyllum dianthus (Scleractinia) from Chile: characteristics of the biocoenoses, the bioeroding community, heterotrophic interactions and (paleo) - bathymetric implications. In: Freiwald A. & Roberts J. M. (eds) Cold-Water Corals and Ecosystems: 937 - 977. Springer, Heidelberg. https: // doi. org / 10.1007 / 3 - 540 - 27673 - 4 _ 48", "Bromley R. G. 2005. Preliminary study of bioerosion in the deep-water coral Lophelia, Pleistocene, Rhodes, Greece. In: Freiwald A. & Roberts J. M. (eds) Cold-Water Corals and Ecosystems: 895 - 914. Springer, Heidelberg. https: // doi. org / 10.1007 / 3 - 540 - 27673 - 4 _ 46", "Wisshak M. 2006. High-Latitude Bioerosion: The Kosterfjord Experiment. Lecture Notes in Earth Sciences 109. Springer, Heidelberg. https: // doi. org / 10.1007 / 978 - 3 - 540 - 36849 - 6", "Beuck L., Freiwald A. & Taviani M. 2010. Spatiotemporal bioerosion patterns in deep-water scleractinians from off Santa Maria di Leuca (Apulia, Ionian Sea). Deep-Sea Research II 57: 458 - 470. https: // doi. org / doi: 10.1016 / j. dsr 2.2009.08.019", "Pokorny R. & Stofik M. 2016. Evidence of bioerosive structures in Quaternary glaciomarine sediments from southwestern Iceland. Ichnos. https: // doi. org / 10.1080 / 10420940.2016.1260567", "Titschack J., Joseph N., Fietzke J., Freiwald A. & Bromley R. G. 2013. Record of a tectonicallycontrolled regression captured by changes in carbonate skeletal associations on a structured island shelf (mid-Pleistocene, Rhodes, Greece). Sedimentary Geology 283: 15 - 33. https: // doi. org / 10.1016 / j. sedgeo. 2012.11.001", "Wisshak M. 2008. Two new dwarf Entobia ichnospecies in a diverse aphotic ichnocoenosis (Pleistocene / Rhodes, Greece). In: Wisshak M. & Tapanila L. (eds) Current Developments in Bioerosion: 213 - 233. Springer, Heidelberg. https: // doi. org / 10.1007 / 978 - 3 - 540 - 77598 - 0 _ 11"]}
format Text
author Wisshak, Max
author_facet Wisshak, Max
author_sort Wisshak, Max
title Pyritonema villosa Wisshak 2017, isp. nov.
title_short Pyritonema villosa Wisshak 2017, isp. nov.
title_full Pyritonema villosa Wisshak 2017, isp. nov.
title_fullStr Pyritonema villosa Wisshak 2017, isp. nov.
title_full_unstemmed Pyritonema villosa Wisshak 2017, isp. nov.
title_sort pyritonema villosa wisshak 2017, isp. nov.
publisher Zenodo
publishDate 2017
url https://dx.doi.org/10.5281/zenodo.3853711
https://zenodo.org/record/3853711
long_lat ENVELOPE(25.383,25.383,66.400,66.400)
geographic Arctic
Svalbard
Norway
Tapanila
geographic_facet Arctic
Svalbard
Norway
Tapanila
genre Arctic
Foraminifera*
Iceland
Lophelia pertusa
Svalbard
genre_facet Arctic
Foraminifera*
Iceland
Lophelia pertusa
Svalbard
op_relation http://zenodo.org/record/3839858
http://publication.plazi.org/id/7441CF20BA769F284C53200DFFF9FFC3
http://zoobank.org/4D1D1CA3-8345-4BA3-9C7C-5EBDD40752CE
https://zenodo.org/communities/biosyslit
https://dx.doi.org/10.5852/ejt.2017.390
http://zenodo.org/record/3839858
http://publication.plazi.org/id/7441CF20BA769F284C53200DFFF9FFC3
https://dx.doi.org/10.5281/zenodo.3839911
http://zoobank.org/4D1D1CA3-8345-4BA3-9C7C-5EBDD40752CE
https://dx.doi.org/10.5281/zenodo.3853710
https://zenodo.org/communities/biosyslit
op_rights Open Access
Creative Commons Zero v1.0 Universal
https://creativecommons.org/publicdomain/zero/1.0/legalcode
cc0-1.0
info:eu-repo/semantics/openAccess
op_rightsnorm CC0
op_doi https://doi.org/10.5281/zenodo.3853711
https://doi.org/10.5852/ejt.2017.390
https://doi.org/10.5281/zenodo.3839911
https://doi.org/10.5281/zenodo.3853710
_version_ 1766350964116160512
spelling ftdatacite:10.5281/zenodo.3853711 2023-05-15T15:20:40+02:00 Pyritonema villosa Wisshak 2017, isp. nov. Wisshak, Max 2017 https://dx.doi.org/10.5281/zenodo.3853711 https://zenodo.org/record/3853711 unknown Zenodo http://zenodo.org/record/3839858 http://publication.plazi.org/id/7441CF20BA769F284C53200DFFF9FFC3 http://zoobank.org/4D1D1CA3-8345-4BA3-9C7C-5EBDD40752CE https://zenodo.org/communities/biosyslit https://dx.doi.org/10.5852/ejt.2017.390 http://zenodo.org/record/3839858 http://publication.plazi.org/id/7441CF20BA769F284C53200DFFF9FFC3 https://dx.doi.org/10.5281/zenodo.3839911 http://zoobank.org/4D1D1CA3-8345-4BA3-9C7C-5EBDD40752CE https://dx.doi.org/10.5281/zenodo.3853710 https://zenodo.org/communities/biosyslit Open Access Creative Commons Zero v1.0 Universal https://creativecommons.org/publicdomain/zero/1.0/legalcode cc0-1.0 info:eu-repo/semantics/openAccess CC0 Biodiversity Taxonomy Animalia Porifera Hexactinellida Lyssacinosida Lyssacinosida awaiting allocation Pyritonema Pyritonema villosa Text Taxonomic treatment article-journal ScholarlyArticle 2017 ftdatacite https://doi.org/10.5281/zenodo.3853711 https://doi.org/10.5852/ejt.2017.390 https://doi.org/10.5281/zenodo.3839911 https://doi.org/10.5281/zenodo.3853710 2021-11-05T12:55:41Z Pyrodendrina villosa isp. nov. urn:lsid:zoobank.org:act: 1365F057-8115-4FF7-9F0D-48E5C896CECA Fig. 26 Morfotipo B 4 – (?) Mayoral 1988: 306; pl. I, figs 6–7. Sponge form II – Wisshak et al. 2005a: 991, fig. 7B. Semidendrina Form – Wisshak et al. 2005a: 993, fig. 9. Foraminiferan trace – Försterra et al. 2005: 957, fig. 9D–H. non-camerate radiating form – Bromley 2005: 908, fig. 10. Hirsute camerate form – (?) Bromley 2005: 908, fig. 11. Semidendrina -form – Wisshak 2006 (partim): 91, fig. 29C–D. Microsponge-form 2 – Wisshak 2006: 84, fig. 28D. Foraminiferan Form – Beuck et al. 2010 (partim): 467, fig. 8C–D. Clionolithes isp. – (?) Pokorný & Štofik 2016: fig. 11L. Diagnosis Central node of elongate to irregular shape located at shell surface as open channels, with branched and tapered galleries radiating from it, as well as shorter vertical tunnels penetrating deeper into the substrate. Gallery terminations blunt to tapered, ornamented with long, hairy protrusions. Etymology From the Latin ‘villosus’, villous, a reflection of the irregular, furry ornamentation of this trace. Type material, locality and horizon Holotype (Fig. 26 A–D) and a number of additional specimens cast in epoxy from a Lophelia pertusa coral skeleton from the Lindos Bay Formation, Middle Pleistocene, found at isolated hill one km SW of Lardos, Rhodes, Greece. For further details concerning the type locality and its ichnological record, see Titschack et al. (2013) and Wisshak (2008). Deposited in the trace fossil collection of the Senckenberg Institute in Frankfurt, Germany (SMF XXX 866). Description The irregularly-shaped and branched central cavity of this large Pyrodendrina ichnospecies is developed as system of open channels at the substrate surface (Fig. 26A, E–F), while side branches radiating from it may run as tunnels closely parallel to and below the surface. The true extent of the open channels may be uncertain due to collapse of the thin roof of the trace, particularly in taphonomically advanced stages. Anastomoses are rare. The overall outline of the trace may be elongate (Fig. 26G) to more rosetted (Fig. 26 H–I), and the number of lateral branches varies strongly. The cross section of the side branches varies from circular to horizontal flattened or vertically condensed. Gallery terminations are either blunt or tapered. Along the entire central node and the radiating branches, vertically oriented projections may reach deeper into the substrate and taper (Fig. 26D, G). A multitude of spiny protrusions extend deeper into the substrate or form a horizontal extension or contact to the substrate surface in the case of prostrate cavities (Fig. 26C, I). Apart from the hairy ornament, the surface texture is irregularly bulged and in some cases weakly cuspate. Trace diameters measured from epoxy casts of 18 specimens from various localities (see below) yield a maximum length of the trace ranging from 1107 to 3844 µm (mean = 2461 ± 759 µm; measured without peripheral spiny protrusions), and a maximum width of 1005 to 2389 µm (mean = 1601 ± 478 µm). Radiating galleries have diameters of 35 to 245 µm (mean = 99 ± 37 µm; n = 160). The maximum length of the spiny protrusions ranges from 83 to 392 µm (mean = 240 ± 111 µm). Remarks Additional material was investigated from Miocene bivalves from SE Australia, Pleistocene cold water corals sampled in Messina, Sicily, Recent cold water coral reef sites such as Stjernsund and Sula Reef (Norway), Säcken Reef (Sweden), reefs off Santa Maria di Leuca (Italy), and from a subfossil arctic bivalve shell sampled off SW Svalbard. This large ichnospecies of Pyrodendrina is distinguished from other members of the ichnogenus by its development of open channels and by the particularly pronounced spiny surface texture. It has the shortest vertical galleries in relation to the dimension of the horizontal cavity. : Published as part of Wisshak, Max, 2017, Taming an ichnotaxonomical Pandora's box: revision of dendritic and rosetted microborings (ichnofamily: Dendrinidae), pp. 1-99 in European Journal of Taxonomy 390 on pages 66-68, DOI: 10.5852/ejt.2017.390, http://zenodo.org/record/3839858 : {"references": ["Mayoral E. 1988. Microperforaciones (Tallophyta) sobre Bivalvia del Plioceno del Bajo Guadalquivir. Importancia paleoecologica. Estudios Geologicos 44: 301 - 316.", "Wisshak M., Freiwald A., Lundalv T. & Gektidis M. 2005 a. The physical niche of bathyal Lophelia pertusa in a non-bathyal setting: environmental controls and palaeoecological implications. In: Freiwald A. & Roberts J. M. (eds) Cold-Water Corals and Ecosystems: 979 - 1001. Springer, Heidelberg. https: // doi. org / 10.1007 / 3 - 540 - 27673 - 4 _ 49", "Forsterra G., Beuck L., Haussermann V. & Freiwald A. 2005. Shallow-water Desmophyllum dianthus (Scleractinia) from Chile: characteristics of the biocoenoses, the bioeroding community, heterotrophic interactions and (paleo) - bathymetric implications. In: Freiwald A. & Roberts J. M. (eds) Cold-Water Corals and Ecosystems: 937 - 977. Springer, Heidelberg. https: // doi. org / 10.1007 / 3 - 540 - 27673 - 4 _ 48", "Bromley R. G. 2005. Preliminary study of bioerosion in the deep-water coral Lophelia, Pleistocene, Rhodes, Greece. In: Freiwald A. & Roberts J. M. (eds) Cold-Water Corals and Ecosystems: 895 - 914. Springer, Heidelberg. https: // doi. org / 10.1007 / 3 - 540 - 27673 - 4 _ 46", "Wisshak M. 2006. High-Latitude Bioerosion: The Kosterfjord Experiment. Lecture Notes in Earth Sciences 109. Springer, Heidelberg. https: // doi. org / 10.1007 / 978 - 3 - 540 - 36849 - 6", "Beuck L., Freiwald A. & Taviani M. 2010. Spatiotemporal bioerosion patterns in deep-water scleractinians from off Santa Maria di Leuca (Apulia, Ionian Sea). Deep-Sea Research II 57: 458 - 470. https: // doi. org / doi: 10.1016 / j. dsr 2.2009.08.019", "Pokorny R. & Stofik M. 2016. Evidence of bioerosive structures in Quaternary glaciomarine sediments from southwestern Iceland. Ichnos. https: // doi. org / 10.1080 / 10420940.2016.1260567", "Titschack J., Joseph N., Fietzke J., Freiwald A. & Bromley R. G. 2013. Record of a tectonicallycontrolled regression captured by changes in carbonate skeletal associations on a structured island shelf (mid-Pleistocene, Rhodes, Greece). Sedimentary Geology 283: 15 - 33. https: // doi. org / 10.1016 / j. sedgeo. 2012.11.001", "Wisshak M. 2008. Two new dwarf Entobia ichnospecies in a diverse aphotic ichnocoenosis (Pleistocene / Rhodes, Greece). In: Wisshak M. & Tapanila L. (eds) Current Developments in Bioerosion: 213 - 233. Springer, Heidelberg. https: // doi. org / 10.1007 / 978 - 3 - 540 - 77598 - 0 _ 11"]} Text Arctic Foraminifera* Iceland Lophelia pertusa Svalbard DataCite Metadata Store (German National Library of Science and Technology) Arctic Svalbard Norway Tapanila ENVELOPE(25.383,25.383,66.400,66.400)