Identification of key processes in bridging the Arctic warming impact and its variation on decadal timescale (D3.2)

Summary: Observational analysis of the Arctic warming impacts: The key driver bridging the winter Arctic warming (1980 to 2014) impact to the Northern Hemisphere has been identified, my means of an advanced multi-variable statistical analysis, to be a tropospheric pathway, linking interannual variab...

Full description

Bibliographic Details
Main Authors: Manzini, Elisa, Ghosh, Rohit, Matei, Daniela, Gastineau, Guillaume, Simon, Amélie, Kwon, Young-Oh, Yang, Shuting
Format: Text
Language:English
Published: Zenodo 2019
Subjects:
Online Access:https://dx.doi.org/10.5281/zenodo.3559466
https://zenodo.org/record/3559466
id ftdatacite:10.5281/zenodo.3559466
record_format openpolar
spelling ftdatacite:10.5281/zenodo.3559466 2023-05-15T14:33:37+02:00 Identification of key processes in bridging the Arctic warming impact and its variation on decadal timescale (D3.2) Manzini, Elisa Ghosh, Rohit Matei, Daniela Gastineau, Guillaume Simon, Amélie Kwon, Young-Oh Yang, Shuting 2019 https://dx.doi.org/10.5281/zenodo.3559466 https://zenodo.org/record/3559466 en eng Zenodo https://zenodo.org/communities/blue-actionh2020 https://dx.doi.org/10.5281/zenodo.3559465 https://zenodo.org/communities/blue-actionh2020 Open Access Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode cc-by-4.0 info:eu-repo/semantics/openAccess CC-BY Text Project deliverable article-journal ScholarlyArticle 2019 ftdatacite https://doi.org/10.5281/zenodo.3559466 https://doi.org/10.5281/zenodo.3559465 2021-11-05T12:55:41Z Summary: Observational analysis of the Arctic warming impacts: The key driver bridging the winter Arctic warming (1980 to 2014) impact to the Northern Hemisphere has been identified, my means of an advanced multi-variable statistical analysis, to be a tropospheric pathway, linking interannual variability in Arctic warming to the Northern Hemisphere lower atmosphere variability with one month lag. Clearly, the analysis has shown, that the response to the pan-Arctic sea-ice changes does not involve the stratosphere. A covariation of sea-ice variability with Siberian snow cover may be responsible of previously proposed pathways of influences involving the stratosphere. In addition, the analysis suggests that the mechanism of the tropospheric pathway may include the intensification of the Ural anticyclone. Coordinated experiments on Arctic warming impact and its variation on decadal timescale: Warm Arctic Cold Eurasia in winter surface air temperature. Making use of the ensembles of atmospheric model experiment with and without Arctic sea ice forcing it has emerged that the large scale pattern of winter surface air temperature variability is an internal mode of atmospheric variability. At shorter time scales (interannual) the project models capture this internal mode of atmospheric variability. At longer time scales (multi-annual, decadal), however, the models fail to capture the variability/trend of the winter surface air temperature (over 1980-2014). Arctic sea-ice driven variability . Within the Arctic Circle, the sea-ice driven variability explains about 3% of the total variance for sea level pressure and about 23% for surface air temperature in boreal winter at interannual and longer time scales. Regionally, the sea-ice driven variability is 1-1.5 times as large as the variability driven by the other forcings over the Arctic and northern Eurasia. Contrasting Summer and Winter Impact of Arctic sea-ice loss. Large scale features of atmospheric circulation trends over the period 1980-2014 are not reproduced by models, both in winter and summer. While in winter internal atmospheric variability likely plays a role, the difference in summers may point to structural model deficiencies. Multidecadal variability in sea surface temperatures and Arctic warming. The role of variations of the Pacific Ocean surface temperatures on Arctic warming and its impacts many be hard to be identified, given that preliminary results suggest sensitivity to structural model differences. : The Blue-Action project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No 727852. Text Arctic Sea ice DataCite Metadata Store (German National Library of Science and Technology) Arctic Pacific
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language English
description Summary: Observational analysis of the Arctic warming impacts: The key driver bridging the winter Arctic warming (1980 to 2014) impact to the Northern Hemisphere has been identified, my means of an advanced multi-variable statistical analysis, to be a tropospheric pathway, linking interannual variability in Arctic warming to the Northern Hemisphere lower atmosphere variability with one month lag. Clearly, the analysis has shown, that the response to the pan-Arctic sea-ice changes does not involve the stratosphere. A covariation of sea-ice variability with Siberian snow cover may be responsible of previously proposed pathways of influences involving the stratosphere. In addition, the analysis suggests that the mechanism of the tropospheric pathway may include the intensification of the Ural anticyclone. Coordinated experiments on Arctic warming impact and its variation on decadal timescale: Warm Arctic Cold Eurasia in winter surface air temperature. Making use of the ensembles of atmospheric model experiment with and without Arctic sea ice forcing it has emerged that the large scale pattern of winter surface air temperature variability is an internal mode of atmospheric variability. At shorter time scales (interannual) the project models capture this internal mode of atmospheric variability. At longer time scales (multi-annual, decadal), however, the models fail to capture the variability/trend of the winter surface air temperature (over 1980-2014). Arctic sea-ice driven variability . Within the Arctic Circle, the sea-ice driven variability explains about 3% of the total variance for sea level pressure and about 23% for surface air temperature in boreal winter at interannual and longer time scales. Regionally, the sea-ice driven variability is 1-1.5 times as large as the variability driven by the other forcings over the Arctic and northern Eurasia. Contrasting Summer and Winter Impact of Arctic sea-ice loss. Large scale features of atmospheric circulation trends over the period 1980-2014 are not reproduced by models, both in winter and summer. While in winter internal atmospheric variability likely plays a role, the difference in summers may point to structural model deficiencies. Multidecadal variability in sea surface temperatures and Arctic warming. The role of variations of the Pacific Ocean surface temperatures on Arctic warming and its impacts many be hard to be identified, given that preliminary results suggest sensitivity to structural model differences. : The Blue-Action project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No 727852.
format Text
author Manzini, Elisa
Ghosh, Rohit
Matei, Daniela
Gastineau, Guillaume
Simon, Amélie
Kwon, Young-Oh
Yang, Shuting
spellingShingle Manzini, Elisa
Ghosh, Rohit
Matei, Daniela
Gastineau, Guillaume
Simon, Amélie
Kwon, Young-Oh
Yang, Shuting
Identification of key processes in bridging the Arctic warming impact and its variation on decadal timescale (D3.2)
author_facet Manzini, Elisa
Ghosh, Rohit
Matei, Daniela
Gastineau, Guillaume
Simon, Amélie
Kwon, Young-Oh
Yang, Shuting
author_sort Manzini, Elisa
title Identification of key processes in bridging the Arctic warming impact and its variation on decadal timescale (D3.2)
title_short Identification of key processes in bridging the Arctic warming impact and its variation on decadal timescale (D3.2)
title_full Identification of key processes in bridging the Arctic warming impact and its variation on decadal timescale (D3.2)
title_fullStr Identification of key processes in bridging the Arctic warming impact and its variation on decadal timescale (D3.2)
title_full_unstemmed Identification of key processes in bridging the Arctic warming impact and its variation on decadal timescale (D3.2)
title_sort identification of key processes in bridging the arctic warming impact and its variation on decadal timescale (d3.2)
publisher Zenodo
publishDate 2019
url https://dx.doi.org/10.5281/zenodo.3559466
https://zenodo.org/record/3559466
geographic Arctic
Pacific
geographic_facet Arctic
Pacific
genre Arctic
Sea ice
genre_facet Arctic
Sea ice
op_relation https://zenodo.org/communities/blue-actionh2020
https://dx.doi.org/10.5281/zenodo.3559465
https://zenodo.org/communities/blue-actionh2020
op_rights Open Access
Creative Commons Attribution 4.0 International
https://creativecommons.org/licenses/by/4.0/legalcode
cc-by-4.0
info:eu-repo/semantics/openAccess
op_rightsnorm CC-BY
op_doi https://doi.org/10.5281/zenodo.3559466
https://doi.org/10.5281/zenodo.3559465
_version_ 1766306825185001472