Global Derived Datasets For Use In K-Nn Machine Learning Prediction Of Global Seafloor Total Organic Carbon

This dataset includes 663 predictor grids used for k-NN global prediction of seafloor total organic carbon. 663 predictor grids available in netCDF4 HDF5 file format. Grids are cell-centered sized 4320 x 2160. File names adhere to the naming conventions discussed below. The naming structure is parti...

Full description

Bibliographic Details
Main Authors: Lee, Taylor R., Wood, Warren T., Phrampus, Benjamin J.
Format: Dataset
Language:English
Published: Zenodo 2018
Subjects:
Online Access:https://dx.doi.org/10.5281/zenodo.1471639
https://zenodo.org/record/1471639
id ftdatacite:10.5281/zenodo.1471639
record_format openpolar
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language English
topic globaldatasets
machinelearning
globalprediction
spellingShingle globaldatasets
machinelearning
globalprediction
Lee, Taylor R.
Wood, Warren T.
Phrampus, Benjamin J.
Global Derived Datasets For Use In K-Nn Machine Learning Prediction Of Global Seafloor Total Organic Carbon
topic_facet globaldatasets
machinelearning
globalprediction
description This dataset includes 663 predictor grids used for k-NN global prediction of seafloor total organic carbon. 663 predictor grids available in netCDF4 HDF5 file format. Grids are cell-centered sized 4320 x 2160. File names adhere to the naming conventions discussed below. The naming structure is partioned by underscores and periods in the following order: interface to which the gridded values refer to, quantity of values contained within the grid, units and reference values/units (e.g. meters below sea level), data source, statistic calculated (if applicable), grid pitch, and file extension. Possible interfaces from the top – down: SS – Sea surface – atmosphere interface (may also be average of the entire water column) SF – Seafloor – water interface (may also be denoted by GL) GL – Ground level (e.g. bottom of pure liquid, top of dirt) SC – Sediment – crust interface (e.g. sediment above, igneous/metamorphic below) CM – Crust – mantle interface (e.g. Mohorovicic discontinuity) Appropriate reference naming marker (bold), original data source, and date of last access: Becker Becker, J. J., Wood, W. T., & Martin, K. M. (2014). Global crustal heat flow using random decision forest prediction , Abstract NG31A-3788 presented at 2014 Fall Meeting, AGU, San Francisco, California, U.S.A. Last access: 06/23/2015. CRUST1 Pasyanos, M.E., Masters, G., Laske, G. & Ma, Z. (2012). LITHO1.0 - An Updated Crust and Lithospheric Model of the Earth Developed Using Multiple Data Constraints , Abstract T11D-09 presented at 2012 Fall Meeting, AGU, San Francisco, California, U.S.A. Last access: 07/01/2014. CRUST1_NOAA As the NOAA sediment thickness database is globally not complete, data gaps in the NOAA grid with this have been supplemented by the CRUST1 sediment thickness (see above citation). Whittaker, J., Goncharov, A., Williams, S., Müller, R. D., & Leitchenkov, G. (2013) Global sediment thickness dataset updated for the Australian-Antarctic Southern Ocean, Geochemistry, Geophysics, Geosystems. https://doi.org/10.1002/ggge.2018. Last access: 09/02/2018. GVP Global Volcanism Program (2013) Volcanoes of the World. In E. Venzke (ed.). (Vol. 4.7.3). Smithsonian Institution. https://doi.org/10.5479/si.GVP.VOTW4-2013. Last access: 09/22/2014. ETOPO2v2 National Geophysical Data Center (2006). 2-minute Gridded Global Relief Data (ETOPO2) v2. National Geophysical Data Center, NOAA. DOI: 10.7289/V5J1012Q. Last access: 02/06/2013. PLATES Coffin, M.F., Gahagan, L.M., & Lawver, L.A. (1998). Present-day Plate Boundary Digital Data Compilation. University of Texas Institute for Geophysics Technical Report (No. 174, pp. 5). Last access: 09/15/2014. ONRL Ludwig,W., Amiotte-Suchet, P., & Probst, J. L. (2011). ISLSCP II Global River Fluxes of Carbon and Sediments to the Oceans. In F. G. Hall, G. Collatz, B. Meeson, S. Los, E. Brown de Colstoun, and D. Landis (Eds.), ISLSCP Initiative II Collection . Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. http://dx.doi.org/10.3334/ORNLDAAC/1028. Last Access: 02/15/2015. Muller Müller, R. D., Sdrolias, M., Gaina, C., & Roest, W. R. (2008). Age, spreading rates, and spreading asymmetry of the world’s ocean crust, Geochemistry, Geophysics, Geosystems , 9(4), Q04006. https://doi.org/10.1029/2007GC001743. Last accessed: 07/19/2011. Woa13x Boyer, T.P., Antonov, J. I., Baranova, O. K., Coleman, C., Garcia, H. E., Grodsky, A., et al. (2013) World Ocean Database 2013. In S. Levitus, A. Mishonov (Ed.), NOAA Atlas NESDIS 72, Technical Ed . Silver Spring, MD. http://doi.org/10.7289/V5NZ85MT. Last Access: 09/18/2014. KIM Kim, S.S. & Wessel, P. (2011). New global seamount census from the altimetry-derived gravity data, Geophysical Journal International , 186, 615-631. https://doi.org/10.1111/j.1365-246X.2011.05076.x. Last access: 09/22/2014. HYCOM The 1/12 deg global HYCOM+NCODA Ocean Reanalysis was funded by the U.S. Navy and the Modeling and Simulation Coordination Office. Computer time was made available by the DoD High Performance Computing Modernization Program. The output is publicly available at https://hycom.org/publications/acknowledgements/ocean-reanalysis-data.Last access: 03/19/2014. NCEDC NCEDC (2016). Northern California Earthquake Data Center. UC Berkeley Seismological Laboratory. Dataset. doi:10.7932/NCEDC. Last access: 09/21/2014. Wei2010 Wei, C.-L., Rowe, G. T., Escobar-Briones, E., Boetius, A., Soltwedel, T., Caley, M. J., et al.(2010). Global patterns and predictions of seafloor biomass using random forests. PLoS ONE ,5(12), e15323. https://doi.org/10.1371/journal.pone.0015323 Last access: 06/20/2016. NGA_egm2008 Pavlis, N.K., Holmes, S. A., Kenyon, S. C., & Factor, J. K. (2008). The EGM2008 Global Gravitational Model , Abstract 2008AGUFM.G22A..01P presented at the 2008 General Assembly of the European Geosciences Union, Vienna, Austria. Last access: 07/10/2014. WAVEWATCH3 The 1/12 deg global HYCOM+NCODA Ocean Reanalysis was funded by the U.S. Navy and the Modeling and Simulation Coordination Office. Computer time was made available by the DoD High Performance Computing Modernization Program. The output is publicly available at https://hycom.org/publications/acknowledgements/ocean-reanalysis-data. Last access: 03/19/2014. Updated global seafloor porosity grid using our k-nearest neighbors algorithm using 5 nearest neighbors. Observed data used for prediction from Martin et al. (2015). Martin, K. M., Wood, W. T., & Becker, J. J. (2015). A global prediction of seafloor sediment porosity using machine learning. Geophysical Research Letters , 42(24), 10640. https://doi.org/10.1002/2015GL065279 Other grids which have been generated by empirical means are latitude (and derivatives), longitude (and derivatives), Coriolis, coast_is_1.0, and the random noise grids. Units referenced are as follows: KGM3 - kilogram per cubic meter MS - meters per second KM - kilometer M_ASL - meters above sea level (i.e. meters referenced to sea level) MWM2 - milliwatt per square meter TGCYR - terragram of carbon per year TGYR - terragram per year MA - megaannum M - meters MGCM2 - milligram of carbon per square meter DEG - degree S - seconds Statistics grids are calculated within a given radius (e.g. 10km, 50km, 125km, 250km, 500km, 1000km) of the respective cell-centered value. The statistics grids include mean (.men), average absolute deviation from the mean (.aad), and the common logarithm (.log) of the absolute value of the mean (.mlg). Additionally, some grids are a weighted count for given radii (e.g. seamounts) where weight is a cosine taper from the center of the grid cell. The grid pitch for this dataset is uniformly at 5-arc minute denoted by “.5m”. Additionally, the extension used (netCDF4) is denoted by “.nc”.
format Dataset
author Lee, Taylor R.
Wood, Warren T.
Phrampus, Benjamin J.
author_facet Lee, Taylor R.
Wood, Warren T.
Phrampus, Benjamin J.
author_sort Lee, Taylor R.
title Global Derived Datasets For Use In K-Nn Machine Learning Prediction Of Global Seafloor Total Organic Carbon
title_short Global Derived Datasets For Use In K-Nn Machine Learning Prediction Of Global Seafloor Total Organic Carbon
title_full Global Derived Datasets For Use In K-Nn Machine Learning Prediction Of Global Seafloor Total Organic Carbon
title_fullStr Global Derived Datasets For Use In K-Nn Machine Learning Prediction Of Global Seafloor Total Organic Carbon
title_full_unstemmed Global Derived Datasets For Use In K-Nn Machine Learning Prediction Of Global Seafloor Total Organic Carbon
title_sort global derived datasets for use in k-nn machine learning prediction of global seafloor total organic carbon
publisher Zenodo
publishDate 2018
url https://dx.doi.org/10.5281/zenodo.1471639
https://zenodo.org/record/1471639
long_lat ENVELOPE(-31.000,-31.000,-81.200,-81.200)
ENVELOPE(-72.065,-72.065,-75.109,-75.109)
ENVELOPE(163.400,163.400,-77.533,-77.533)
ENVELOPE(-45.150,-45.150,-60.683,-60.683)
ENVELOPE(15.000,15.000,65.800,65.800)
ENVELOPE(-174.867,-174.867,-85.167,-85.167)
ENVELOPE(-60.904,-60.904,-62.592,-62.592)
geographic Antarctic
Baranova
Boyer
Coleman
Escobar
Gaina
Kenyon
Rowe
Southern Ocean
geographic_facet Antarctic
Baranova
Boyer
Coleman
Escobar
Gaina
Kenyon
Rowe
Southern Ocean
genre Antarc*
Antarctic
Southern Ocean
genre_facet Antarc*
Antarctic
Southern Ocean
op_relation https://dx.doi.org/10.5281/zenodo.1471638
op_rights Open Access
Creative Commons Attribution 4.0
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
op_rightsnorm CC-BY
op_doi https://doi.org/10.5281/zenodo.1471639
https://doi.org/10.5281/zenodo.1471638
_version_ 1766258526353620992
spelling ftdatacite:10.5281/zenodo.1471639 2023-05-15T13:53:26+02:00 Global Derived Datasets For Use In K-Nn Machine Learning Prediction Of Global Seafloor Total Organic Carbon Lee, Taylor R. Wood, Warren T. Phrampus, Benjamin J. 2018 https://dx.doi.org/10.5281/zenodo.1471639 https://zenodo.org/record/1471639 en eng Zenodo https://dx.doi.org/10.5281/zenodo.1471638 Open Access Creative Commons Attribution 4.0 https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess CC-BY globaldatasets machinelearning globalprediction dataset Dataset 2018 ftdatacite https://doi.org/10.5281/zenodo.1471639 https://doi.org/10.5281/zenodo.1471638 2021-11-05T12:55:41Z This dataset includes 663 predictor grids used for k-NN global prediction of seafloor total organic carbon. 663 predictor grids available in netCDF4 HDF5 file format. Grids are cell-centered sized 4320 x 2160. File names adhere to the naming conventions discussed below. The naming structure is partioned by underscores and periods in the following order: interface to which the gridded values refer to, quantity of values contained within the grid, units and reference values/units (e.g. meters below sea level), data source, statistic calculated (if applicable), grid pitch, and file extension. Possible interfaces from the top – down: SS – Sea surface – atmosphere interface (may also be average of the entire water column) SF – Seafloor – water interface (may also be denoted by GL) GL – Ground level (e.g. bottom of pure liquid, top of dirt) SC – Sediment – crust interface (e.g. sediment above, igneous/metamorphic below) CM – Crust – mantle interface (e.g. Mohorovicic discontinuity) Appropriate reference naming marker (bold), original data source, and date of last access: Becker Becker, J. J., Wood, W. T., & Martin, K. M. (2014). Global crustal heat flow using random decision forest prediction , Abstract NG31A-3788 presented at 2014 Fall Meeting, AGU, San Francisco, California, U.S.A. Last access: 06/23/2015. CRUST1 Pasyanos, M.E., Masters, G., Laske, G. & Ma, Z. (2012). LITHO1.0 - An Updated Crust and Lithospheric Model of the Earth Developed Using Multiple Data Constraints , Abstract T11D-09 presented at 2012 Fall Meeting, AGU, San Francisco, California, U.S.A. Last access: 07/01/2014. CRUST1_NOAA As the NOAA sediment thickness database is globally not complete, data gaps in the NOAA grid with this have been supplemented by the CRUST1 sediment thickness (see above citation). Whittaker, J., Goncharov, A., Williams, S., Müller, R. D., & Leitchenkov, G. (2013) Global sediment thickness dataset updated for the Australian-Antarctic Southern Ocean, Geochemistry, Geophysics, Geosystems. https://doi.org/10.1002/ggge.2018. Last access: 09/02/2018. GVP Global Volcanism Program (2013) Volcanoes of the World. In E. Venzke (ed.). (Vol. 4.7.3). Smithsonian Institution. https://doi.org/10.5479/si.GVP.VOTW4-2013. Last access: 09/22/2014. ETOPO2v2 National Geophysical Data Center (2006). 2-minute Gridded Global Relief Data (ETOPO2) v2. National Geophysical Data Center, NOAA. DOI: 10.7289/V5J1012Q. Last access: 02/06/2013. PLATES Coffin, M.F., Gahagan, L.M., & Lawver, L.A. (1998). Present-day Plate Boundary Digital Data Compilation. University of Texas Institute for Geophysics Technical Report (No. 174, pp. 5). Last access: 09/15/2014. ONRL Ludwig,W., Amiotte-Suchet, P., & Probst, J. L. (2011). ISLSCP II Global River Fluxes of Carbon and Sediments to the Oceans. In F. G. Hall, G. Collatz, B. Meeson, S. Los, E. Brown de Colstoun, and D. Landis (Eds.), ISLSCP Initiative II Collection . Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. http://dx.doi.org/10.3334/ORNLDAAC/1028. Last Access: 02/15/2015. Muller Müller, R. D., Sdrolias, M., Gaina, C., & Roest, W. R. (2008). Age, spreading rates, and spreading asymmetry of the world’s ocean crust, Geochemistry, Geophysics, Geosystems , 9(4), Q04006. https://doi.org/10.1029/2007GC001743. Last accessed: 07/19/2011. Woa13x Boyer, T.P., Antonov, J. I., Baranova, O. K., Coleman, C., Garcia, H. E., Grodsky, A., et al. (2013) World Ocean Database 2013. In S. Levitus, A. Mishonov (Ed.), NOAA Atlas NESDIS 72, Technical Ed . Silver Spring, MD. http://doi.org/10.7289/V5NZ85MT. Last Access: 09/18/2014. KIM Kim, S.S. & Wessel, P. (2011). New global seamount census from the altimetry-derived gravity data, Geophysical Journal International , 186, 615-631. https://doi.org/10.1111/j.1365-246X.2011.05076.x. Last access: 09/22/2014. HYCOM The 1/12 deg global HYCOM+NCODA Ocean Reanalysis was funded by the U.S. Navy and the Modeling and Simulation Coordination Office. Computer time was made available by the DoD High Performance Computing Modernization Program. The output is publicly available at https://hycom.org/publications/acknowledgements/ocean-reanalysis-data.Last access: 03/19/2014. NCEDC NCEDC (2016). Northern California Earthquake Data Center. UC Berkeley Seismological Laboratory. Dataset. doi:10.7932/NCEDC. Last access: 09/21/2014. Wei2010 Wei, C.-L., Rowe, G. T., Escobar-Briones, E., Boetius, A., Soltwedel, T., Caley, M. J., et al.(2010). Global patterns and predictions of seafloor biomass using random forests. PLoS ONE ,5(12), e15323. https://doi.org/10.1371/journal.pone.0015323 Last access: 06/20/2016. NGA_egm2008 Pavlis, N.K., Holmes, S. A., Kenyon, S. C., & Factor, J. K. (2008). The EGM2008 Global Gravitational Model , Abstract 2008AGUFM.G22A..01P presented at the 2008 General Assembly of the European Geosciences Union, Vienna, Austria. Last access: 07/10/2014. WAVEWATCH3 The 1/12 deg global HYCOM+NCODA Ocean Reanalysis was funded by the U.S. Navy and the Modeling and Simulation Coordination Office. Computer time was made available by the DoD High Performance Computing Modernization Program. The output is publicly available at https://hycom.org/publications/acknowledgements/ocean-reanalysis-data. Last access: 03/19/2014. Updated global seafloor porosity grid using our k-nearest neighbors algorithm using 5 nearest neighbors. Observed data used for prediction from Martin et al. (2015). Martin, K. M., Wood, W. T., & Becker, J. J. (2015). A global prediction of seafloor sediment porosity using machine learning. Geophysical Research Letters , 42(24), 10640. https://doi.org/10.1002/2015GL065279 Other grids which have been generated by empirical means are latitude (and derivatives), longitude (and derivatives), Coriolis, coast_is_1.0, and the random noise grids. Units referenced are as follows: KGM3 - kilogram per cubic meter MS - meters per second KM - kilometer M_ASL - meters above sea level (i.e. meters referenced to sea level) MWM2 - milliwatt per square meter TGCYR - terragram of carbon per year TGYR - terragram per year MA - megaannum M - meters MGCM2 - milligram of carbon per square meter DEG - degree S - seconds Statistics grids are calculated within a given radius (e.g. 10km, 50km, 125km, 250km, 500km, 1000km) of the respective cell-centered value. The statistics grids include mean (.men), average absolute deviation from the mean (.aad), and the common logarithm (.log) of the absolute value of the mean (.mlg). Additionally, some grids are a weighted count for given radii (e.g. seamounts) where weight is a cosine taper from the center of the grid cell. The grid pitch for this dataset is uniformly at 5-arc minute denoted by “.5m”. Additionally, the extension used (netCDF4) is denoted by “.nc”. Dataset Antarc* Antarctic Southern Ocean DataCite Metadata Store (German National Library of Science and Technology) Antarctic Baranova ENVELOPE(-31.000,-31.000,-81.200,-81.200) Boyer ENVELOPE(-72.065,-72.065,-75.109,-75.109) Coleman ENVELOPE(163.400,163.400,-77.533,-77.533) Escobar ENVELOPE(-45.150,-45.150,-60.683,-60.683) Gaina ENVELOPE(15.000,15.000,65.800,65.800) Kenyon ENVELOPE(-174.867,-174.867,-85.167,-85.167) Rowe ENVELOPE(-60.904,-60.904,-62.592,-62.592) Southern Ocean