Modeling And Simulation Of A Hybrid System Solar Panel And Wind Turbine In The Quingeo Heritage Center In Ecuador

In this article, we present the modeling, simulations, and energy conversion analysis of the solar-wind system for the Quingeo Heritage Center in Ecuador. A numerical model was constructed based on the 19 equations, it was coded in MATLAB R2017a, and the results were compared with the experimental d...

Full description

Bibliographic Details
Main Authors: Brito, Juan Portoviejo, Alvarez, Daniel Icaza, Samaniego, Christian Castro
Format: Text
Language:English
Published: Zenodo 2018
Subjects:
Online Access:https://dx.doi.org/10.5281/zenodo.1317292
https://zenodo.org/record/1317292
id ftdatacite:10.5281/zenodo.1317292
record_format openpolar
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language English
topic Hybrid system
wind turbine
modeling
simulation
Smart Grid
Quingeo Azuay Ecuador.
spellingShingle Hybrid system
wind turbine
modeling
simulation
Smart Grid
Quingeo Azuay Ecuador.
Brito, Juan Portoviejo
Alvarez, Daniel Icaza
Samaniego, Christian Castro
Modeling And Simulation Of A Hybrid System Solar Panel And Wind Turbine In The Quingeo Heritage Center In Ecuador
topic_facet Hybrid system
wind turbine
modeling
simulation
Smart Grid
Quingeo Azuay Ecuador.
description In this article, we present the modeling, simulations, and energy conversion analysis of the solar-wind system for the Quingeo Heritage Center in Ecuador. A numerical model was constructed based on the 19 equations, it was coded in MATLAB R2017a, and the results were compared with the experimental data of the site. The model is built with the purpose of using it as a computer development for the optimization of resources and designs of hybrid systems in the Parish of Quingeo and its surroundings. The model obtained a fairly similar pattern compared to the data and curves obtained in the field experimentally and detailed in manuscript. It is important to indicate that this analysis has been carried out so that in the near future one or two of these power generation systems can be exploited in a massive way according to the budget assigned by the Parish GAD of Quingeo or other national or international organizations with the purpose of preserving this unique colonial helmet in Ecuador. : {"references": ["Neira. R, Velecela. M, \"Estudio de factibilidad de generaci\u00f3n el\u00e9ctrica mediante energ\u00eda e\u00f3lica y energ\u00eda solar fotovoltaica para el sector de Garauzhi de la Parroquia Quingeo perteneciente a la Ciudad de Cuenca\" , UPS; Ecuador, 2014.", "Zhang HL, Baeyens J, Degreve J, Caceres G. \"Concentrated solar power plants: review and design methodology\". Renew Sustain Energy Review, vol.22, 201.", "Peterseim. J. H, Hellwig. U, Tadros. A, White. \"Hybridisation optimization of concentrating solar thermal and biomass power generation facilities\", Science direct Solar Energy vol. 99, pp. 203\u2013 214, 2014.", "Pedram Asef, R. Bargallo Perpina, Bereket T. Habte, A. Babaeian, \"An Alternative Organic growth through Acquisitions Investigation on wind Energy\", International conference \u2013Alternative and renewable Energy Quest, AREQ 2017, Energy Procedia, 1-3 February 2017, Spain.", "Iftekhar Hussain, C.M. Duffy, A. & Norton, B. (2015), \"A Comparative Technological Review of Hybrid CSP-Biomass CHP Systems in Europe\", International Conference on Sustainable Energy & Environmental Protection, Paisley, UK, 11-14 August.", "Icaza D. Sami S., \"Modeling, Simulation and Stability Analysis Using MATLAB of a Hybrid System Solar Panel and Wind Turbine in The Locality of Puntahacienda-Quingeo In Ecuador\", International Journal of Management and sustainability, 2018 vol. 7, No 1, pp 1-24 ISSN(e): 2306-0662. ISSN(p): 2306-9856. DOI: 10.18488/journal.11.2018.71.1.24.", "Binayak, B., Shiva, R. P., Kyung-Tae L., Sung-Hoon A., \"Mathematical Modeling of Hybrid Renewable Energy System: A Review on Small Hydro-Solar-Wind Power Generation\", International Journal of Precision engineering and Manufacturing-green Technology, Vol. 1, No 2, pp. 157-173, 2014.", "Kavitha Sirasani, S. Y. Kamdi, \"Solar Hydro Hybrid Energy System Simulation\" International Journal of Soft Computing and Engineering (IJSCE), Volume-2, Issue-6, pp. 500-503, January 2013.", "GARC\u00cdA, M., \"Modelado de Sistemas Fotovoltaicos Aut\u00f3nomos\". En: Fundamentos, dimensionado y aplicaciones de la energ\u00eda solar fotovoltaica. Madrid: Centro de Investigaciones Energ\u00e9ticas, Medioambientales y Tecnol\u00f3gicas (CIEMAT), 2006, p.13, ISBN: 9788478345144.\n[10]\tWENHAM, S.; et al., \"Applied Photovoltaics\". 2nd. ed., London: Earthscan, 2007, 134 p., ISBN: 978-184407-401-3.\n[11]\tMarreno Santana, M, \"Par\u00e1metros de rugosidad representativos de terrenos naturales\", Tesis para t\u00edtulo de Master en Geof\u00edsica y Meteorolog\u00eda, Departamento de F\u00edsica Aplicada en la Universidad de Universidad de Granada, Granada, Espa\u00f1a: Universidad de Granada, 2011. \n[12]\tRamazan Bayindir et al., \"A Comprehensive Study on Microgrid Technology\", International Journal of Renowable Energy Research, Vol. 4, No. 4, 2014.\n[13]\tPenyarat Chinda, Pascal Brault; The hybrid solid oxide fuel cell (SOFC) and gas turbine (GT) systems steady state modeling, International Journal of Hydrogen Energy, Volume 37, Issue 11, June 2012, Pages 9237\u20139248 \n[14]\tDustin McLarty, Jack Brouwer, Scott Samuelsen, Fuel cell\u2013gas turbine hybrid system design part I: Steady state performance, Journal of Power Sources, Volume 257, 1 July 2014, Pages 412\u2013420.\n[15]\tAtideh Abbasi and Zhenhua Jiang, Design and analysis of a fuel cell/gas turbine hybrid power system , Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, 2008 IEEE.\n[16]\tYoshimasa Ando, Hiroyuki Oozawa, Masahiro Mihara, Hirroki Irie, Yasutaka Urashita, Takuo Ikegami, Demonstration of SOFC-Micro Gas Turbine (MGT), Mitsubishi Heavy Industries Technical Review Vol. 52 No. 4 (December 2015).\n[17]\tCraig S. Turchi, and Zhiwen M, Gas Turbine/Solar Parabolic Trough Hybrid Designs, To be presented at the ASME Turbo Expo 2011, Vancouver, Canada, June 6-10, 2011.\n[18]\tIcaza D., Conce H., Flores P., Conce F., \"Dimensioning of the main mechanical elements and final assembly of the DIAWIND-A2 wind turbine\", 2017 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), DOI: 10.1109/CHILECON.2017.8229551.\n[19]\tIcaza D., Modeling, simulation and construction of the D-ICAZA-A1 wind turbine destined for the rural areas of Ecuador. Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), 2017 IEEE PES. Quito 2017/12/4.\n[20]\tColak I, Bayindir R, Fulli G, Tekin I, Demirtas K, Covrig CF. Smart grid opportunities and applications in Turkey. Renew Sustain Energy Rev 2014; 33: 344\u201352. \n[21]\tSaha, N.C., Acharjee, S., Mollah, M.A.S., Rahman, K.T., and Rafi, F. H. M.,\" Modeling and Performance Analysis of a Hybrid Power System\", Proc. of International Conference on Informatics Electronics & Vision (ICIEV), pp. 1-5, 2013.\n[22]\tMustafa, E., \"Sizing and Simulation of PV-Wind Hybrid Power System\", International Journal of Photoenergy, Vol 2013, Article ID 217526, 10 pages, 2013. \n[23]\tColak I, Sagiroglu S, Fulli G, Yesilbudak M, Covrig CF. A survey on the critical issues in smart grid technologies. Renew Sustain Energy Rev 2014. submitted for publication. \n[24]\tBekele, G and Tadesse, G \"Feasability Study of Small Hydro/Pv/Wind Hybrid System for off- Grid Rural Electrification in Ethiopia\", Applied Energy, Vol 97, pp.5-15, 2012. \n[25]\tFadaeenejed, M, Radzi, M. A., AbKadir, M.Z. and Hizam, H.,\" Assessment of Hybrid Renewable Power Sources for Rural Electrification in Malaysia\", Renewable and Sustainable Energy Reviews, Vol. 30, pp. 299- 305, 2013. \n[26]\tF. Viola, P. Romano, R.Miceli, D. La Cascia, M. Longo, \"Economical evaluation of ecological benefits of the demand side management\", ICRERA 2014, Milwaukee 19-22, 2014.\n[27]\tFabio Viola, Pietro Romano, Eleonora Riva Sanseverino, Rosario Miceli, Marzia Cardinale, Giuseppe Schettino \"An economic study about the installation of PV plants reconfiguration systems in Italy\", pubblicato in 2014 International Conference on Renewable Energy Research and Application (ICRERA), DOI: 10.1109/ICRERA.2014.7016534.\n[28]\tSami, S. and Icaza, D. \"Modeling, Simulation of Hybrid Solar Photovoltaic, Wind turbine and Hydraulic Power System\", IJEST, International Journal of Engineering Science and Technology, Volume 7, Issue 9, September 30, 2015.\n[29]\tWhiteman, C. D, \"Meteorolog\u00eda de Monta\u00f1as: Fundamentos y Aplicaciones\", Oxford: Oxford University Press, 2000.\n[30]\tIcaza, D., Pauta, A., Saguay, G., & Solis, F. (2016). Control System for Less than Wind Turbines 1500W. Journal of Technology Innovations in Renewable Energy, 5(3), 99-106.\n[31]\tIcaza D., Modeling, simulation and construction of the D-ICAZA-A1 wind turbine destined for the rural areas of Ecuador. Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), 2017 IEEE PES. Quito 2017/12/4.\n[32]\tIcaza Alvarez, Daniel Orlando. Modelado, simulaci\u00f3n y construcci\u00f3n de una turbina de viento DIAWIND-A2 como una nueva alternativa de generaci\u00f3n el\u00e9ctrica en \u00e1reas rurales de Ecuador. Killkana T\u00e9cnica, 2018, vol. 1, no 3, p. 9-16.\n[33]\tIcaza D, C\u00f3rdova F, Toledo J, Carlos C, Lojano A, \"Modeling and simulation of a hybrid system solar panel and wind turbine in the locality of Molleturo in Ecuador\". ICRERA 2017. San Diego CA USA pp 620-625. DOI: 10.1109/ICRERA.2017.8191134\n[34]\tFlores V\u00e1zquez, Carlos Alberto, and Marcos Santiago D\u00e1vila Carrera. Modulaci\u00f3n senoidal de ancho de pulso (SPWM) como etapa de control en m\u00f3dulos de peque\u00f1a y gran escala, para aplicaciones en variadores de frecuencia. BS thesis. 2009.\n[35]\tAlvarez, S. R., Ruiz, A. M., & Oviedo, J. E. (2017, November). Optimal design of a diesel-PV-wind system with batteries and hydro pumped storage in a Colombian community. In Renewable Energy Research and Applications (ICRERA), 2017 IEEE 6th International Conference on (pp. 234-239). IEEE."]}
format Text
author Brito, Juan Portoviejo
Alvarez, Daniel Icaza
Samaniego, Christian Castro
author_facet Brito, Juan Portoviejo
Alvarez, Daniel Icaza
Samaniego, Christian Castro
author_sort Brito, Juan Portoviejo
title Modeling And Simulation Of A Hybrid System Solar Panel And Wind Turbine In The Quingeo Heritage Center In Ecuador
title_short Modeling And Simulation Of A Hybrid System Solar Panel And Wind Turbine In The Quingeo Heritage Center In Ecuador
title_full Modeling And Simulation Of A Hybrid System Solar Panel And Wind Turbine In The Quingeo Heritage Center In Ecuador
title_fullStr Modeling And Simulation Of A Hybrid System Solar Panel And Wind Turbine In The Quingeo Heritage Center In Ecuador
title_full_unstemmed Modeling And Simulation Of A Hybrid System Solar Panel And Wind Turbine In The Quingeo Heritage Center In Ecuador
title_sort modeling and simulation of a hybrid system solar panel and wind turbine in the quingeo heritage center in ecuador
publisher Zenodo
publishDate 2018
url https://dx.doi.org/10.5281/zenodo.1317292
https://zenodo.org/record/1317292
long_lat ENVELOPE(-64.483,-64.483,-65.633,-65.633)
ENVELOPE(-60.783,-60.783,-62.467,-62.467)
ENVELOPE(-55.200,-55.200,-63.200,-63.200)
ENVELOPE(-67.817,-67.817,-67.550,-67.550)
ENVELOPE(9.861,9.861,63.283,63.283)
ENVELOPE(-61.833,-61.833,-64.500,-64.500)
ENVELOPE(-59.783,-59.783,-62.450,-62.450)
ENVELOPE(12.638,12.638,66.488,66.488)
ENVELOPE(-67.967,-67.967,-67.450,-67.450)
ENVELOPE(-67.317,-67.317,-73.700,-73.700)
geographic Alvarez
Ancho
Caceres
Canada
Carrera
Espa
Marcos
Quito
Riva
Rosario
Toledo
geographic_facet Alvarez
Ancho
Caceres
Canada
Carrera
Espa
Marcos
Quito
Riva
Rosario
Toledo
genre sami
genre_facet sami
op_relation https://dx.doi.org/10.5281/zenodo.1317291
op_rights Open Access
Creative Commons Attribution 4.0
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
op_rightsnorm CC-BY
op_doi https://doi.org/10.5281/zenodo.1317292
https://doi.org/10.5281/zenodo.1317291
_version_ 1766187194166280192
spelling ftdatacite:10.5281/zenodo.1317292 2023-05-15T18:14:24+02:00 Modeling And Simulation Of A Hybrid System Solar Panel And Wind Turbine In The Quingeo Heritage Center In Ecuador Brito, Juan Portoviejo Alvarez, Daniel Icaza Samaniego, Christian Castro 2018 https://dx.doi.org/10.5281/zenodo.1317292 https://zenodo.org/record/1317292 en eng Zenodo https://dx.doi.org/10.5281/zenodo.1317291 Open Access Creative Commons Attribution 4.0 https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess CC-BY Hybrid system wind turbine modeling simulation Smart Grid Quingeo Azuay Ecuador. Text Journal article article-journal ScholarlyArticle 2018 ftdatacite https://doi.org/10.5281/zenodo.1317292 https://doi.org/10.5281/zenodo.1317291 2021-11-05T12:55:41Z In this article, we present the modeling, simulations, and energy conversion analysis of the solar-wind system for the Quingeo Heritage Center in Ecuador. A numerical model was constructed based on the 19 equations, it was coded in MATLAB R2017a, and the results were compared with the experimental data of the site. The model is built with the purpose of using it as a computer development for the optimization of resources and designs of hybrid systems in the Parish of Quingeo and its surroundings. The model obtained a fairly similar pattern compared to the data and curves obtained in the field experimentally and detailed in manuscript. It is important to indicate that this analysis has been carried out so that in the near future one or two of these power generation systems can be exploited in a massive way according to the budget assigned by the Parish GAD of Quingeo or other national or international organizations with the purpose of preserving this unique colonial helmet in Ecuador. : {"references": ["Neira. R, Velecela. M, \"Estudio de factibilidad de generaci\u00f3n el\u00e9ctrica mediante energ\u00eda e\u00f3lica y energ\u00eda solar fotovoltaica para el sector de Garauzhi de la Parroquia Quingeo perteneciente a la Ciudad de Cuenca\" , UPS; Ecuador, 2014.", "Zhang HL, Baeyens J, Degreve J, Caceres G. \"Concentrated solar power plants: review and design methodology\". Renew Sustain Energy Review, vol.22, 201.", "Peterseim. J. H, Hellwig. U, Tadros. A, White. \"Hybridisation optimization of concentrating solar thermal and biomass power generation facilities\", Science direct Solar Energy vol. 99, pp. 203\u2013 214, 2014.", "Pedram Asef, R. Bargallo Perpina, Bereket T. Habte, A. Babaeian, \"An Alternative Organic growth through Acquisitions Investigation on wind Energy\", International conference \u2013Alternative and renewable Energy Quest, AREQ 2017, Energy Procedia, 1-3 February 2017, Spain.", "Iftekhar Hussain, C.M. Duffy, A. & Norton, B. (2015), \"A Comparative Technological Review of Hybrid CSP-Biomass CHP Systems in Europe\", International Conference on Sustainable Energy & Environmental Protection, Paisley, UK, 11-14 August.", "Icaza D. Sami S., \"Modeling, Simulation and Stability Analysis Using MATLAB of a Hybrid System Solar Panel and Wind Turbine in The Locality of Puntahacienda-Quingeo In Ecuador\", International Journal of Management and sustainability, 2018 vol. 7, No 1, pp 1-24 ISSN(e): 2306-0662. ISSN(p): 2306-9856. DOI: 10.18488/journal.11.2018.71.1.24.", "Binayak, B., Shiva, R. P., Kyung-Tae L., Sung-Hoon A., \"Mathematical Modeling of Hybrid Renewable Energy System: A Review on Small Hydro-Solar-Wind Power Generation\", International Journal of Precision engineering and Manufacturing-green Technology, Vol. 1, No 2, pp. 157-173, 2014.", "Kavitha Sirasani, S. Y. Kamdi, \"Solar Hydro Hybrid Energy System Simulation\" International Journal of Soft Computing and Engineering (IJSCE), Volume-2, Issue-6, pp. 500-503, January 2013.", "GARC\u00cdA, M., \"Modelado de Sistemas Fotovoltaicos Aut\u00f3nomos\". En: Fundamentos, dimensionado y aplicaciones de la energ\u00eda solar fotovoltaica. Madrid: Centro de Investigaciones Energ\u00e9ticas, Medioambientales y Tecnol\u00f3gicas (CIEMAT), 2006, p.13, ISBN: 9788478345144.\n[10]\tWENHAM, S.; et al., \"Applied Photovoltaics\". 2nd. ed., London: Earthscan, 2007, 134 p., ISBN: 978-184407-401-3.\n[11]\tMarreno Santana, M, \"Par\u00e1metros de rugosidad representativos de terrenos naturales\", Tesis para t\u00edtulo de Master en Geof\u00edsica y Meteorolog\u00eda, Departamento de F\u00edsica Aplicada en la Universidad de Universidad de Granada, Granada, Espa\u00f1a: Universidad de Granada, 2011. \n[12]\tRamazan Bayindir et al., \"A Comprehensive Study on Microgrid Technology\", International Journal of Renowable Energy Research, Vol. 4, No. 4, 2014.\n[13]\tPenyarat Chinda, Pascal Brault; The hybrid solid oxide fuel cell (SOFC) and gas turbine (GT) systems steady state modeling, International Journal of Hydrogen Energy, Volume 37, Issue 11, June 2012, Pages 9237\u20139248 \n[14]\tDustin McLarty, Jack Brouwer, Scott Samuelsen, Fuel cell\u2013gas turbine hybrid system design part I: Steady state performance, Journal of Power Sources, Volume 257, 1 July 2014, Pages 412\u2013420.\n[15]\tAtideh Abbasi and Zhenhua Jiang, Design and analysis of a fuel cell/gas turbine hybrid power system , Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, 2008 IEEE.\n[16]\tYoshimasa Ando, Hiroyuki Oozawa, Masahiro Mihara, Hirroki Irie, Yasutaka Urashita, Takuo Ikegami, Demonstration of SOFC-Micro Gas Turbine (MGT), Mitsubishi Heavy Industries Technical Review Vol. 52 No. 4 (December 2015).\n[17]\tCraig S. Turchi, and Zhiwen M, Gas Turbine/Solar Parabolic Trough Hybrid Designs, To be presented at the ASME Turbo Expo 2011, Vancouver, Canada, June 6-10, 2011.\n[18]\tIcaza D., Conce H., Flores P., Conce F., \"Dimensioning of the main mechanical elements and final assembly of the DIAWIND-A2 wind turbine\", 2017 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), DOI: 10.1109/CHILECON.2017.8229551.\n[19]\tIcaza D., Modeling, simulation and construction of the D-ICAZA-A1 wind turbine destined for the rural areas of Ecuador. Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), 2017 IEEE PES. Quito 2017/12/4.\n[20]\tColak I, Bayindir R, Fulli G, Tekin I, Demirtas K, Covrig CF. Smart grid opportunities and applications in Turkey. Renew Sustain Energy Rev 2014; 33: 344\u201352. \n[21]\tSaha, N.C., Acharjee, S., Mollah, M.A.S., Rahman, K.T., and Rafi, F. H. M.,\" Modeling and Performance Analysis of a Hybrid Power System\", Proc. of International Conference on Informatics Electronics & Vision (ICIEV), pp. 1-5, 2013.\n[22]\tMustafa, E., \"Sizing and Simulation of PV-Wind Hybrid Power System\", International Journal of Photoenergy, Vol 2013, Article ID 217526, 10 pages, 2013. \n[23]\tColak I, Sagiroglu S, Fulli G, Yesilbudak M, Covrig CF. A survey on the critical issues in smart grid technologies. Renew Sustain Energy Rev 2014. submitted for publication. \n[24]\tBekele, G and Tadesse, G \"Feasability Study of Small Hydro/Pv/Wind Hybrid System for off- Grid Rural Electrification in Ethiopia\", Applied Energy, Vol 97, pp.5-15, 2012. \n[25]\tFadaeenejed, M, Radzi, M. A., AbKadir, M.Z. and Hizam, H.,\" Assessment of Hybrid Renewable Power Sources for Rural Electrification in Malaysia\", Renewable and Sustainable Energy Reviews, Vol. 30, pp. 299- 305, 2013. \n[26]\tF. Viola, P. Romano, R.Miceli, D. La Cascia, M. Longo, \"Economical evaluation of ecological benefits of the demand side management\", ICRERA 2014, Milwaukee 19-22, 2014.\n[27]\tFabio Viola, Pietro Romano, Eleonora Riva Sanseverino, Rosario Miceli, Marzia Cardinale, Giuseppe Schettino \"An economic study about the installation of PV plants reconfiguration systems in Italy\", pubblicato in 2014 International Conference on Renewable Energy Research and Application (ICRERA), DOI: 10.1109/ICRERA.2014.7016534.\n[28]\tSami, S. and Icaza, D. \"Modeling, Simulation of Hybrid Solar Photovoltaic, Wind turbine and Hydraulic Power System\", IJEST, International Journal of Engineering Science and Technology, Volume 7, Issue 9, September 30, 2015.\n[29]\tWhiteman, C. D, \"Meteorolog\u00eda de Monta\u00f1as: Fundamentos y Aplicaciones\", Oxford: Oxford University Press, 2000.\n[30]\tIcaza, D., Pauta, A., Saguay, G., & Solis, F. (2016). Control System for Less than Wind Turbines 1500W. Journal of Technology Innovations in Renewable Energy, 5(3), 99-106.\n[31]\tIcaza D., Modeling, simulation and construction of the D-ICAZA-A1 wind turbine destined for the rural areas of Ecuador. Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), 2017 IEEE PES. Quito 2017/12/4.\n[32]\tIcaza Alvarez, Daniel Orlando. Modelado, simulaci\u00f3n y construcci\u00f3n de una turbina de viento DIAWIND-A2 como una nueva alternativa de generaci\u00f3n el\u00e9ctrica en \u00e1reas rurales de Ecuador. Killkana T\u00e9cnica, 2018, vol. 1, no 3, p. 9-16.\n[33]\tIcaza D, C\u00f3rdova F, Toledo J, Carlos C, Lojano A, \"Modeling and simulation of a hybrid system solar panel and wind turbine in the locality of Molleturo in Ecuador\". ICRERA 2017. San Diego CA USA pp 620-625. DOI: 10.1109/ICRERA.2017.8191134\n[34]\tFlores V\u00e1zquez, Carlos Alberto, and Marcos Santiago D\u00e1vila Carrera. Modulaci\u00f3n senoidal de ancho de pulso (SPWM) como etapa de control en m\u00f3dulos de peque\u00f1a y gran escala, para aplicaciones en variadores de frecuencia. BS thesis. 2009.\n[35]\tAlvarez, S. R., Ruiz, A. M., & Oviedo, J. E. (2017, November). Optimal design of a diesel-PV-wind system with batteries and hydro pumped storage in a Colombian community. In Renewable Energy Research and Applications (ICRERA), 2017 IEEE 6th International Conference on (pp. 234-239). IEEE."]} Text sami DataCite Metadata Store (German National Library of Science and Technology) Alvarez ENVELOPE(-64.483,-64.483,-65.633,-65.633) Ancho ENVELOPE(-60.783,-60.783,-62.467,-62.467) Caceres ENVELOPE(-55.200,-55.200,-63.200,-63.200) Canada Carrera ENVELOPE(-67.817,-67.817,-67.550,-67.550) Espa ENVELOPE(9.861,9.861,63.283,63.283) Marcos ENVELOPE(-61.833,-61.833,-64.500,-64.500) Quito ENVELOPE(-59.783,-59.783,-62.450,-62.450) Riva ENVELOPE(12.638,12.638,66.488,66.488) Rosario ENVELOPE(-67.967,-67.967,-67.450,-67.450) Toledo ENVELOPE(-67.317,-67.317,-73.700,-73.700)