Tests And Comparison Of Two Mobile Industrial Analytical Systems For Mercury Speciation In Flue Gas

Combustion of solid fuels is one of the main sources of mercury in the environment. To reduce the amount of mercury emitted to the atmosphere, it is necessary to modify or optimize old purification technologies or introduce the new ones. Effective reduction of mercury level in the flue gas requires...

Full description

Bibliographic Details
Main Authors: Borovec, Karel, Gorecki, Jerzy, Tadeas Ochodek
Format: Text
Language:English
Published: Zenodo 2017
Subjects:
Online Access:https://dx.doi.org/10.5281/zenodo.1132678
https://zenodo.org/record/1132678
id ftdatacite:10.5281/zenodo.1132678
record_format openpolar
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language English
topic Mercury determination
speciation
continuous measurement
flue gas.
spellingShingle Mercury determination
speciation
continuous measurement
flue gas.
Borovec, Karel
Gorecki, Jerzy
Tadeas Ochodek
Tests And Comparison Of Two Mobile Industrial Analytical Systems For Mercury Speciation In Flue Gas
topic_facet Mercury determination
speciation
continuous measurement
flue gas.
description Combustion of solid fuels is one of the main sources of mercury in the environment. To reduce the amount of mercury emitted to the atmosphere, it is necessary to modify or optimize old purification technologies or introduce the new ones. Effective reduction of mercury level in the flue gas requires the use of speciation systems for mercury form determination. This paper describes tests and provides comparison of two industrial portable and continuous systems for mercury speciation in the flue gas: Durag HM-1400 TRX with a speciation module and the Portable Continuous Mercury Speciation System based on the SGM-8 mercury speciation set, made by Nippon Instruments Corporation. Additionally, the paper describes a few analytical problems that were encountered during a two-year period of using the systems. : {"references": ["EPA. Air Pollution and the Clean Air Act. http://www.epa.gov/air/caa/. (accessed 16.09.2017).", "EPA. Clean Air Mercury Rule. http://www.epa.gov/camr/. (accessed 16.09.2017).", "EPA. Summary of the Clean Air Act. 10.03.2015; http://www2.epa.gov/laws-regulations/summary-clean-air-act. (accessed 16.09.2017).", "V. M. Fthenakis, F. W. Lipferta, P. D. Moskowitza, L. Saroffb, \"An assessment of mercury emissions and health risks from a coal-fired power plant\", Journal of Hazardous Materials, vol. 44 pp. 267\u2013283 1995.", "C. S. Wong. N. S. Duzgoren-Aydin, A. Aydin M. H. Wong, \"Sources and trends of environmental mercury emissions in Asia\", Sci Total Environ, vol. 368 pp. 649-62. 2006.", "Jun Lee. Seo YC. Jurng J. Hong JH. Park JW. Hyun JE. Gyu Lee T., Mercury emissions from selected stationary combustion sources in Korea, Science of The Total Environment, 325(1\u20133) (2004) 155\u2013161.", "L Uruski, J. Gorecki, M. Macherzynski, T. Dziok, J. Golas, \"The ability of Polish coals to release mercury in the process of thermal treatment\", Fuel Processing Technology. Vol. 140 pp. 12-20 2015.", "Dziok T. Struga\u0142a A. Rozwadowski A. Macherzy\u0144ski M., Studies on the correlation between mercury content and content of various form of sulfur in Polish hard coals. Fuel. 159 (2015) 206-213.", "E. J. Granite, H. Pennline, \"Novel Sorbents for Mercury Removal from Flue Gas\", Industrial & Engineering Chemistry Research. Vol. 39 pp. 1020-1029 2000.\n[10]\tE. J. Granite, H. Pennline, \"Photochemical Removal of Mercury from Flue Gas\", Industrial & Engineering Chemistry Research. Vol. 41 pp. 5470-5476 2002.\n[11]\tA. A. Presto, E. J. Granite, \"Critical Review: Survey of Catalysts for Oxidation of Mercury in Flue Gas. Environmental Science & Technology. Vol 40 pp. 5601-5609, 2006.\n[12]\tA. A. Presto, E. J. Granite, \"Noble Metal Catalysts for Mercury Oxidation in Utility Flue Gas\", \"Platinum Metals Review\" vol. 52 pp. 144-154 2008.\n[13]\tA. A. Presto, E. J. Granite, \"Impact of Sulfur Oxides on Mercury Capture by Activated Carbon\", Environmental Science & Technology. Vol. 41 () pp. 6579-6584 2007.\n[14]\tE. Kalisinska, J. G\u00f3recki, N. Lanocha, A. Oko\u0144ska, J. B. Melgarejo, H. Budis, I. Rzad, J. Golas, \"Total and methylmercury in soft tissues of white-tailed eagle (Haliaeetus albicilla) and osprey (Pandion haliaetus) collected in Poland\", Ambio. Vol. 43 pp. 858\u2013870 2014.\n[15]\tE. Kalisinska, J. Gorecki, A. Okonska, B. Pilarczyk, A. Tomza-Marciniak, H. Budis, N. Lanocha, DI. Kosik-Bogacka, KM. Kavetska, M. Macherzynski, J. Golas, \"Mercury and selenium in the muscle of piscivorous common mergansers (\\emph{Mergus merganser}) from a selenium-deficient European country\", Ecotoxicology and Environmental vol. 101 pp. 107\u2013115 2014.\n[16]\tQ. Zhou, Y. F. Duan S. L. Zhao, C. Zhu, M. She, J. Zhang, SQ. Wang, \"Modeling and experimental studies of in-duct mercury capture by activated carbon injection in an entrained flow reactor\" Fuel Processing Technology vol. 140 pp. 304-311 2015.\n[17]\tYu L. Yin L. Xu Q. Xiong Y. \"Effects of different kinds of coal on the speciation and distribution of mercury in flue gas\" Journal of the Energy Institute. Vol. 88 pp. 136-142 2015.\n[18]\tA. Fuente-Cuesta, M. Diaz-Somoano, M. A. Lopez-Anton, M. R. Martinez-Tarazona, \"Oxidised mercury determination from combustion gas using an ionic exchanger\", Fuel, vol. 122 pp. 218-222 2014.\n[19]\tOnline stack GAS/CEM Systems. http://www.psanalytical.com/products/onlinestackgas.html. (accessed 16.09.2017).\n[20]\tGmbH. S. M. MERCEM Mercury Analysis System. file:///C:/Users/DOM/Desktop/Downloads/MERCEM_en.pdf. (accessed 16.09.2017).\n[21]\tScientific. T. Mercury Freedom System. http://www.thermoscientific.com/content/tfs/en/product/mercury-freedom-system-1.html. (accessed 16.09.2017).\n[22]\tDurag HM 1400 TRX continuous mercury analyser. http://www.directindustry.com/prod/durag-group/product-9067-400797.html. (accessed 02.04.2016).\n[23]\tJ. G\u00f3recki, A. \u0141o\u015b, M. Macherzy\u0144ski, J. Go\u0142a\u015b, P. Burmistrz, K. Borovec, \"A portable continuous system for mercury speciation in flue gas and process gases\" Fuel Processing Technology vol. 154. pp. 44-51 2016.\n[24]\tJ. Gorecki, A. Okonska, \"The construction and testing of the portable Hg2+ ultrasonic calibrator for the control of mercury speciation systems\" Talanta. Vol. 147 pp. 28-34 2016."]}
format Text
author Borovec, Karel
Gorecki, Jerzy
Tadeas Ochodek
author_facet Borovec, Karel
Gorecki, Jerzy
Tadeas Ochodek
author_sort Borovec, Karel
title Tests And Comparison Of Two Mobile Industrial Analytical Systems For Mercury Speciation In Flue Gas
title_short Tests And Comparison Of Two Mobile Industrial Analytical Systems For Mercury Speciation In Flue Gas
title_full Tests And Comparison Of Two Mobile Industrial Analytical Systems For Mercury Speciation In Flue Gas
title_fullStr Tests And Comparison Of Two Mobile Industrial Analytical Systems For Mercury Speciation In Flue Gas
title_full_unstemmed Tests And Comparison Of Two Mobile Industrial Analytical Systems For Mercury Speciation In Flue Gas
title_sort tests and comparison of two mobile industrial analytical systems for mercury speciation in flue gas
publisher Zenodo
publishDate 2017
url https://dx.doi.org/10.5281/zenodo.1132678
https://zenodo.org/record/1132678
long_lat ENVELOPE(-60.667,-60.667,-63.783,-63.783)
ENVELOPE(-57.583,-57.583,-83.333,-83.333)
ENVELOPE(-63.567,-63.567,-64.850,-64.850)
geographic Diaz
Gorecki
Lopez
geographic_facet Diaz
Gorecki
Lopez
genre Haliaeetus albicilla
White-tailed eagle
Pandion haliaetus
genre_facet Haliaeetus albicilla
White-tailed eagle
Pandion haliaetus
op_relation https://dx.doi.org/10.5281/zenodo.1132679
op_rights Open Access
Creative Commons Attribution 4.0
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
op_rightsnorm CC-BY
op_doi https://doi.org/10.5281/zenodo.1132678
https://doi.org/10.5281/zenodo.1132679
_version_ 1766022510768291840
spelling ftdatacite:10.5281/zenodo.1132678 2023-05-15T16:32:46+02:00 Tests And Comparison Of Two Mobile Industrial Analytical Systems For Mercury Speciation In Flue Gas Borovec, Karel Gorecki, Jerzy Tadeas Ochodek 2017 https://dx.doi.org/10.5281/zenodo.1132678 https://zenodo.org/record/1132678 en eng Zenodo https://dx.doi.org/10.5281/zenodo.1132679 Open Access Creative Commons Attribution 4.0 https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess CC-BY Mercury determination speciation continuous measurement flue gas. Text Journal article article-journal ScholarlyArticle 2017 ftdatacite https://doi.org/10.5281/zenodo.1132678 https://doi.org/10.5281/zenodo.1132679 2021-11-05T12:55:41Z Combustion of solid fuels is one of the main sources of mercury in the environment. To reduce the amount of mercury emitted to the atmosphere, it is necessary to modify or optimize old purification technologies or introduce the new ones. Effective reduction of mercury level in the flue gas requires the use of speciation systems for mercury form determination. This paper describes tests and provides comparison of two industrial portable and continuous systems for mercury speciation in the flue gas: Durag HM-1400 TRX with a speciation module and the Portable Continuous Mercury Speciation System based on the SGM-8 mercury speciation set, made by Nippon Instruments Corporation. Additionally, the paper describes a few analytical problems that were encountered during a two-year period of using the systems. : {"references": ["EPA. Air Pollution and the Clean Air Act. http://www.epa.gov/air/caa/. (accessed 16.09.2017).", "EPA. Clean Air Mercury Rule. http://www.epa.gov/camr/. (accessed 16.09.2017).", "EPA. Summary of the Clean Air Act. 10.03.2015; http://www2.epa.gov/laws-regulations/summary-clean-air-act. (accessed 16.09.2017).", "V. M. Fthenakis, F. W. Lipferta, P. D. Moskowitza, L. Saroffb, \"An assessment of mercury emissions and health risks from a coal-fired power plant\", Journal of Hazardous Materials, vol. 44 pp. 267\u2013283 1995.", "C. S. Wong. N. S. Duzgoren-Aydin, A. Aydin M. H. Wong, \"Sources and trends of environmental mercury emissions in Asia\", Sci Total Environ, vol. 368 pp. 649-62. 2006.", "Jun Lee. Seo YC. Jurng J. Hong JH. Park JW. Hyun JE. Gyu Lee T., Mercury emissions from selected stationary combustion sources in Korea, Science of The Total Environment, 325(1\u20133) (2004) 155\u2013161.", "L Uruski, J. Gorecki, M. Macherzynski, T. Dziok, J. Golas, \"The ability of Polish coals to release mercury in the process of thermal treatment\", Fuel Processing Technology. Vol. 140 pp. 12-20 2015.", "Dziok T. Struga\u0142a A. Rozwadowski A. Macherzy\u0144ski M., Studies on the correlation between mercury content and content of various form of sulfur in Polish hard coals. Fuel. 159 (2015) 206-213.", "E. J. Granite, H. Pennline, \"Novel Sorbents for Mercury Removal from Flue Gas\", Industrial & Engineering Chemistry Research. Vol. 39 pp. 1020-1029 2000.\n[10]\tE. J. Granite, H. Pennline, \"Photochemical Removal of Mercury from Flue Gas\", Industrial & Engineering Chemistry Research. Vol. 41 pp. 5470-5476 2002.\n[11]\tA. A. Presto, E. J. Granite, \"Critical Review: Survey of Catalysts for Oxidation of Mercury in Flue Gas. Environmental Science & Technology. Vol 40 pp. 5601-5609, 2006.\n[12]\tA. A. Presto, E. J. Granite, \"Noble Metal Catalysts for Mercury Oxidation in Utility Flue Gas\", \"Platinum Metals Review\" vol. 52 pp. 144-154 2008.\n[13]\tA. A. Presto, E. J. Granite, \"Impact of Sulfur Oxides on Mercury Capture by Activated Carbon\", Environmental Science & Technology. Vol. 41 () pp. 6579-6584 2007.\n[14]\tE. Kalisinska, J. G\u00f3recki, N. Lanocha, A. Oko\u0144ska, J. B. Melgarejo, H. Budis, I. Rzad, J. Golas, \"Total and methylmercury in soft tissues of white-tailed eagle (Haliaeetus albicilla) and osprey (Pandion haliaetus) collected in Poland\", Ambio. Vol. 43 pp. 858\u2013870 2014.\n[15]\tE. Kalisinska, J. Gorecki, A. Okonska, B. Pilarczyk, A. Tomza-Marciniak, H. Budis, N. Lanocha, DI. Kosik-Bogacka, KM. Kavetska, M. Macherzynski, J. Golas, \"Mercury and selenium in the muscle of piscivorous common mergansers (\\emph{Mergus merganser}) from a selenium-deficient European country\", Ecotoxicology and Environmental vol. 101 pp. 107\u2013115 2014.\n[16]\tQ. Zhou, Y. F. Duan S. L. Zhao, C. Zhu, M. She, J. Zhang, SQ. Wang, \"Modeling and experimental studies of in-duct mercury capture by activated carbon injection in an entrained flow reactor\" Fuel Processing Technology vol. 140 pp. 304-311 2015.\n[17]\tYu L. Yin L. Xu Q. Xiong Y. \"Effects of different kinds of coal on the speciation and distribution of mercury in flue gas\" Journal of the Energy Institute. Vol. 88 pp. 136-142 2015.\n[18]\tA. Fuente-Cuesta, M. Diaz-Somoano, M. A. Lopez-Anton, M. R. Martinez-Tarazona, \"Oxidised mercury determination from combustion gas using an ionic exchanger\", Fuel, vol. 122 pp. 218-222 2014.\n[19]\tOnline stack GAS/CEM Systems. http://www.psanalytical.com/products/onlinestackgas.html. (accessed 16.09.2017).\n[20]\tGmbH. S. M. MERCEM Mercury Analysis System. file:///C:/Users/DOM/Desktop/Downloads/MERCEM_en.pdf. (accessed 16.09.2017).\n[21]\tScientific. T. Mercury Freedom System. http://www.thermoscientific.com/content/tfs/en/product/mercury-freedom-system-1.html. (accessed 16.09.2017).\n[22]\tDurag HM 1400 TRX continuous mercury analyser. http://www.directindustry.com/prod/durag-group/product-9067-400797.html. (accessed 02.04.2016).\n[23]\tJ. G\u00f3recki, A. \u0141o\u015b, M. Macherzy\u0144ski, J. Go\u0142a\u015b, P. Burmistrz, K. Borovec, \"A portable continuous system for mercury speciation in flue gas and process gases\" Fuel Processing Technology vol. 154. pp. 44-51 2016.\n[24]\tJ. Gorecki, A. Okonska, \"The construction and testing of the portable Hg2+ ultrasonic calibrator for the control of mercury speciation systems\" Talanta. Vol. 147 pp. 28-34 2016."]} Text Haliaeetus albicilla White-tailed eagle Pandion haliaetus DataCite Metadata Store (German National Library of Science and Technology) Diaz ENVELOPE(-60.667,-60.667,-63.783,-63.783) Gorecki ENVELOPE(-57.583,-57.583,-83.333,-83.333) Lopez ENVELOPE(-63.567,-63.567,-64.850,-64.850)