Secondary Organic Contribution To Particles Formed On The Ice Melted Arctic Ocean

Due to climate warming and consequently due to ice and snow melting of the Arctic Ocean, the highly biologically active ocean surface area has been expanding quickly making possible longer marine biota growth seasons during polar summers. That increase the probability of the remote marine environmen...

Full description

Bibliographic Details
Main Authors: Vaattovaara, Petri, Ristovski, Zoran D., Graus, Martin, Müller, Marcus, EijaAsmi, Liberto, Luca Di, StaffanSjögren, Orsini, Douglas, Leck, Caroline, Laaksonen, Ari
Format: Text
Language:English
Published: Zenodo 2014
Subjects:
Online Access:https://dx.doi.org/10.5281/zenodo.1092154
https://zenodo.org/record/1092154
id ftdatacite:10.5281/zenodo.1092154
record_format openpolar
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language English
topic Arctic Ocean
ice melting
nucleation
secondary organics
clouds
climate.
spellingShingle Arctic Ocean
ice melting
nucleation
secondary organics
clouds
climate.
Vaattovaara, Petri
Ristovski, Zoran D.
Graus, Martin
Müller, Marcus
EijaAsmi
Liberto, Luca Di
StaffanSjögren
Orsini, Douglas
Leck, Caroline
Laaksonen, Ari
Secondary Organic Contribution To Particles Formed On The Ice Melted Arctic Ocean
topic_facet Arctic Ocean
ice melting
nucleation
secondary organics
clouds
climate.
description Due to climate warming and consequently due to ice and snow melting of the Arctic Ocean, the highly biologically active ocean surface area has been expanding quickly making possible longer marine biota growth seasons during polar summers. That increase the probability of the remote marine environment secondary contribution, especially secondary organic contribution, to the particle production and particle growth events and particle properties, consequently effecting on the open ocean, pack ice and ground based regions radiation budget and thus on the feedbacks between arctic biota, particles, clouds, and climate. : {"references": ["Kulmala, M., Vehkam\u00e4ki, H., Pet\u00e4j\u00e4, T., Dal Maso, M., Lauri, A., Kerminen, V.-M., Birmili, W., and McMurry, P.H., Formation and growth rates of ultrafine atmospheric particles: a review of observations. J. Aerosol Sci., 35, 143-176, 2004.", "O'Dowd, C.D. Biogenic coastal aerosol production and its influence on aerosol radiative properties, J. Geophys. Res., 106, 1545-1550.", "Slingo, A. (1990). Sensitivity of the Earth's radiation budget to changes in low clouds. Nature, 343, 49-51, 2001.", "O'Dowd, C.D. and de Leeuw, G., Marine aerosol production: a review of the current knowledge. Phil. Trans. R. Soc. A, 365, 1753-1774, 2007.", "Katoshevski, D., Nenes, A., and Seinfeld, J.H., A study of Processes that Govern the Maintenance of Aerosols in the Marine Boundary Layer. J. Aerosol Sci., 30, 503-532, 1999.", "Vaattovaara, P., Huttunen, P.E., Yoon, Y.J., Joutsensaari, J., Lehtinen, K.E.J., O'Dowd, C.D., and Laaksonen, A., The composition of nucleation and Aitken modes particles during coastal nucleation events: evidence for marine secondary organic contribution. Atmos. Chem. Phys. 6, 4601-4616, 2006.", "Arrigo, K., van Dijken, G., and Padi, S., Impact of a shrinking Arctic ice cover on marine primary production. Geophys. Res. Lett., 35, LI9603, 2008.", "Wiedensohler, A, Covert, D.S., Swietlicki, E., Aalto, P., Heintzenberg, J., and Leck, C., Occurrence of an ultrafine particle mode less than 20 nm in diameter in the marine boundary layer during Arctic summer and autumn. Tellus, 48B, 213-222, 1996", "Str\u00f6m, J., Umeg\u00e5rd, J., Torseth, K., Tunved, P., H.-C. Hansson, Holm\u00e9n, K., Wismann, V., Herber, A., K\u00f6nig-Langlo, G., One year of particle size distribution and aerosol chemical composition measurements at the Zeppelin Station, Svalbard, March 2000-March 2001. Phys. Chem. Earth, 28, 1181-1190, 2003\n[10]\tVaattovaara, P., R\u00e4s\u00e4nen, M., K\u00fchn, T., Joutsensaari, J., Laaksonen, A., A method for detecting the presence of organic fraction in nucleation mode sized particles. Atmos. Chem. Phys., 5, 3277-3287, 2005.\n[11]\tJohnson, G.R., Ristovski, Z.D.,D'Anna, B., Morawska, L., Hygroscopic behavior of partially volatilized coastal marine aerosols using the volatilization and humidification tandem differential mobility analyzer technique. J. Geophys. Res., 110, D20203, 2005.\n[12]\tGraus, M., Mueller, M., and Hansel, A.: High resolution PTR-TOF: quantification and formula confirmation of VOC in real time, J. Am. Soc. Mass Spectr., 21, 1037\u20131044, 2010.\n[13]\tDraxler, R.R. and Rolph, G.D., HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory). Model access via NOAA ARL READY Website (http://www.arl.noaa.gov/ready/hysplit4.html), Silver Spring, MD: NOAA Air Resources Laboratory, 2003.\n[14]\tRolph, G.D., Real-time Environmental Applications and Displays Ystem (READY) Website, Silver Spring, MD: NOAA Air Resources Laboratory, 2003.\n[15]\tClarke, A.D. Atmospheric nuclei in the Pacific midtroposphere: Their nature, concentration, and evolution. J. Geophys. Res., 98, 20633-20647, 1993.\n[16]\tRaes, F., and Van Dingenen. Simulations of condensation and cloud condensation nuclei from dimethyl sulphide in the natural marine boundary layer,J.Geophys. Res., 97, 12901-12912, 1992.\n[17]\tLeck, C. and Bigg, K., Aerosol production over remote marine areas \u2013 A new route. Geophys. Res. Lett., 23, 3577-3581, 1999.\n[18]\tGantt, B., Meskhidze, N., Kamykovski, D., A new physically-based quantification of isoprene and primary organic aerosol emissions from the world's oceans. Atmos .Chem. Phys. Discuss., 9, 2933-2965, 2009.\n[19]\tYassaa, N., Peeken, I., Z\u00f6llner, E., Bluhm, K., Arnold, S., Sparclen, D., Williams, J., Evidence for marine production of monoterpenes.Environ. Chem., 5, 391-401, 2008.\n[20]\tColomb, A., Yassaa, N., Williams, J., Peeken, I., and Lochte, K., Screening volatile organic compounds (VOCs) emissions from five marine phytoplankton species by head space gas chromatography/mass spectrometry (HS-GC/MS). J. Environ. Mon., 10, 325-330, 2008."]}
format Text
author Vaattovaara, Petri
Ristovski, Zoran D.
Graus, Martin
Müller, Marcus
EijaAsmi
Liberto, Luca Di
StaffanSjögren
Orsini, Douglas
Leck, Caroline
Laaksonen, Ari
author_facet Vaattovaara, Petri
Ristovski, Zoran D.
Graus, Martin
Müller, Marcus
EijaAsmi
Liberto, Luca Di
StaffanSjögren
Orsini, Douglas
Leck, Caroline
Laaksonen, Ari
author_sort Vaattovaara, Petri
title Secondary Organic Contribution To Particles Formed On The Ice Melted Arctic Ocean
title_short Secondary Organic Contribution To Particles Formed On The Ice Melted Arctic Ocean
title_full Secondary Organic Contribution To Particles Formed On The Ice Melted Arctic Ocean
title_fullStr Secondary Organic Contribution To Particles Formed On The Ice Melted Arctic Ocean
title_full_unstemmed Secondary Organic Contribution To Particles Formed On The Ice Melted Arctic Ocean
title_sort secondary organic contribution to particles formed on the ice melted arctic ocean
publisher Zenodo
publishDate 2014
url https://dx.doi.org/10.5281/zenodo.1092154
https://zenodo.org/record/1092154
long_lat ENVELOPE(-44.516,-44.516,-60.733,-60.733)
ENVELOPE(28.470,28.470,65.819,65.819)
ENVELOPE(24.087,24.087,65.951,65.951)
ENVELOPE(55.533,55.533,-66.917,-66.917)
ENVELOPE(24.238,24.238,67.190,67.190)
geographic Aitken
Arctic
Arctic Ocean
Joutsensaari
Lauri
Mueller
Pacific
Svalbard
Vaattovaara
geographic_facet Aitken
Arctic
Arctic Ocean
Joutsensaari
Lauri
Mueller
Pacific
Svalbard
Vaattovaara
genre Arctic
Arctic Ocean
Phytoplankton
Svalbard
genre_facet Arctic
Arctic Ocean
Phytoplankton
Svalbard
op_relation https://dx.doi.org/10.5281/zenodo.1092153
op_rights Open Access
Creative Commons Attribution 4.0
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
op_rightsnorm CC-BY
op_doi https://doi.org/10.5281/zenodo.1092154
https://doi.org/10.5281/zenodo.1092153
_version_ 1766330350049427456
spelling ftdatacite:10.5281/zenodo.1092154 2023-05-15T14:58:16+02:00 Secondary Organic Contribution To Particles Formed On The Ice Melted Arctic Ocean Vaattovaara, Petri Ristovski, Zoran D. Graus, Martin Müller, Marcus EijaAsmi Liberto, Luca Di StaffanSjögren Orsini, Douglas Leck, Caroline Laaksonen, Ari 2014 https://dx.doi.org/10.5281/zenodo.1092154 https://zenodo.org/record/1092154 en eng Zenodo https://dx.doi.org/10.5281/zenodo.1092153 Open Access Creative Commons Attribution 4.0 https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess CC-BY Arctic Ocean ice melting nucleation secondary organics clouds climate. Text Journal article article-journal ScholarlyArticle 2014 ftdatacite https://doi.org/10.5281/zenodo.1092154 https://doi.org/10.5281/zenodo.1092153 2021-11-05T12:55:41Z Due to climate warming and consequently due to ice and snow melting of the Arctic Ocean, the highly biologically active ocean surface area has been expanding quickly making possible longer marine biota growth seasons during polar summers. That increase the probability of the remote marine environment secondary contribution, especially secondary organic contribution, to the particle production and particle growth events and particle properties, consequently effecting on the open ocean, pack ice and ground based regions radiation budget and thus on the feedbacks between arctic biota, particles, clouds, and climate. : {"references": ["Kulmala, M., Vehkam\u00e4ki, H., Pet\u00e4j\u00e4, T., Dal Maso, M., Lauri, A., Kerminen, V.-M., Birmili, W., and McMurry, P.H., Formation and growth rates of ultrafine atmospheric particles: a review of observations. J. Aerosol Sci., 35, 143-176, 2004.", "O'Dowd, C.D. Biogenic coastal aerosol production and its influence on aerosol radiative properties, J. Geophys. Res., 106, 1545-1550.", "Slingo, A. (1990). Sensitivity of the Earth's radiation budget to changes in low clouds. Nature, 343, 49-51, 2001.", "O'Dowd, C.D. and de Leeuw, G., Marine aerosol production: a review of the current knowledge. Phil. Trans. R. Soc. A, 365, 1753-1774, 2007.", "Katoshevski, D., Nenes, A., and Seinfeld, J.H., A study of Processes that Govern the Maintenance of Aerosols in the Marine Boundary Layer. J. Aerosol Sci., 30, 503-532, 1999.", "Vaattovaara, P., Huttunen, P.E., Yoon, Y.J., Joutsensaari, J., Lehtinen, K.E.J., O'Dowd, C.D., and Laaksonen, A., The composition of nucleation and Aitken modes particles during coastal nucleation events: evidence for marine secondary organic contribution. Atmos. Chem. Phys. 6, 4601-4616, 2006.", "Arrigo, K., van Dijken, G., and Padi, S., Impact of a shrinking Arctic ice cover on marine primary production. Geophys. Res. Lett., 35, LI9603, 2008.", "Wiedensohler, A, Covert, D.S., Swietlicki, E., Aalto, P., Heintzenberg, J., and Leck, C., Occurrence of an ultrafine particle mode less than 20 nm in diameter in the marine boundary layer during Arctic summer and autumn. Tellus, 48B, 213-222, 1996", "Str\u00f6m, J., Umeg\u00e5rd, J., Torseth, K., Tunved, P., H.-C. Hansson, Holm\u00e9n, K., Wismann, V., Herber, A., K\u00f6nig-Langlo, G., One year of particle size distribution and aerosol chemical composition measurements at the Zeppelin Station, Svalbard, March 2000-March 2001. Phys. Chem. Earth, 28, 1181-1190, 2003\n[10]\tVaattovaara, P., R\u00e4s\u00e4nen, M., K\u00fchn, T., Joutsensaari, J., Laaksonen, A., A method for detecting the presence of organic fraction in nucleation mode sized particles. Atmos. Chem. Phys., 5, 3277-3287, 2005.\n[11]\tJohnson, G.R., Ristovski, Z.D.,D'Anna, B., Morawska, L., Hygroscopic behavior of partially volatilized coastal marine aerosols using the volatilization and humidification tandem differential mobility analyzer technique. J. Geophys. Res., 110, D20203, 2005.\n[12]\tGraus, M., Mueller, M., and Hansel, A.: High resolution PTR-TOF: quantification and formula confirmation of VOC in real time, J. Am. Soc. Mass Spectr., 21, 1037\u20131044, 2010.\n[13]\tDraxler, R.R. and Rolph, G.D., HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory). Model access via NOAA ARL READY Website (http://www.arl.noaa.gov/ready/hysplit4.html), Silver Spring, MD: NOAA Air Resources Laboratory, 2003.\n[14]\tRolph, G.D., Real-time Environmental Applications and Displays Ystem (READY) Website, Silver Spring, MD: NOAA Air Resources Laboratory, 2003.\n[15]\tClarke, A.D. Atmospheric nuclei in the Pacific midtroposphere: Their nature, concentration, and evolution. J. Geophys. Res., 98, 20633-20647, 1993.\n[16]\tRaes, F., and Van Dingenen. Simulations of condensation and cloud condensation nuclei from dimethyl sulphide in the natural marine boundary layer,J.Geophys. Res., 97, 12901-12912, 1992.\n[17]\tLeck, C. and Bigg, K., Aerosol production over remote marine areas \u2013 A new route. Geophys. Res. Lett., 23, 3577-3581, 1999.\n[18]\tGantt, B., Meskhidze, N., Kamykovski, D., A new physically-based quantification of isoprene and primary organic aerosol emissions from the world's oceans. Atmos .Chem. Phys. Discuss., 9, 2933-2965, 2009.\n[19]\tYassaa, N., Peeken, I., Z\u00f6llner, E., Bluhm, K., Arnold, S., Sparclen, D., Williams, J., Evidence for marine production of monoterpenes.Environ. Chem., 5, 391-401, 2008.\n[20]\tColomb, A., Yassaa, N., Williams, J., Peeken, I., and Lochte, K., Screening volatile organic compounds (VOCs) emissions from five marine phytoplankton species by head space gas chromatography/mass spectrometry (HS-GC/MS). J. Environ. Mon., 10, 325-330, 2008."]} Text Arctic Arctic Ocean Phytoplankton Svalbard DataCite Metadata Store (German National Library of Science and Technology) Aitken ENVELOPE(-44.516,-44.516,-60.733,-60.733) Arctic Arctic Ocean Joutsensaari ENVELOPE(28.470,28.470,65.819,65.819) Lauri ENVELOPE(24.087,24.087,65.951,65.951) Mueller ENVELOPE(55.533,55.533,-66.917,-66.917) Pacific Svalbard Vaattovaara ENVELOPE(24.238,24.238,67.190,67.190)