A 3 Dimensional Simulation Of The Repeated Load Triaxial Test

A typical flexible pavement structure consists of the surface, base, sub-base and subgrade soil. The loading traffic is transferred from the top layer with higher stiffness to the layer below with less stiffness. Under normal traffic loading, the behaviour of flexible pavement is very complex and ca...

Full description

Bibliographic Details
Main Authors: Nguyen, Bao Thach, Mohajerani, Abbas
Format: Text
Language:English
Published: Zenodo 2013
Subjects:
Online Access:https://dx.doi.org/10.5281/zenodo.1088098
https://zenodo.org/record/1088098
id ftdatacite:10.5281/zenodo.1088098
record_format openpolar
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language English
topic Discrete element method
repeated load triaxial
pavement materials.
spellingShingle Discrete element method
repeated load triaxial
pavement materials.
Nguyen, Bao Thach
Mohajerani, Abbas
A 3 Dimensional Simulation Of The Repeated Load Triaxial Test
topic_facet Discrete element method
repeated load triaxial
pavement materials.
description A typical flexible pavement structure consists of the surface, base, sub-base and subgrade soil. The loading traffic is transferred from the top layer with higher stiffness to the layer below with less stiffness. Under normal traffic loading, the behaviour of flexible pavement is very complex and can be predicted by using the repeated load triaxial test equipment in the laboratory. However, the nature of the repeated load triaxial testing procedure is considered time-consuming, complicated and expensive, and it is a challenge to carry out as a routine test in the laboratory. Therefore, the current paper proposes a numerical approach to simulate the repeated load triaxial test by employing the discrete element method. A sample with particle size ranging from 2.36mm to 19.0mm was constructed. Material properties, which included normal stiffness, shear stiffness, coefficient of friction, maximum dry density and particle density, were used as the input for the simulation. The sample was then subjected to a combination of deviator and confining stress and it was found that the discrete element method is able to simulate the repeated load triaxial test in the laboratory. : {"references": ["F. Lekarp, U. Isacsson and A. R. Dawson, \"State of the art. I: Resilient response of unbound aggregates\" Journal of Transportation Engineering, vol.126 issue 1, pp. 66-75, 2000.", "R. D. Barksdale, \"The aggregate handbook\" National Stone Association, Sheridan Books, Inc., Elliot Place, Washington, D.C, 2001.", "B. Magnusdottir and S. Erlingsson, \"Repeated load triaxial testing for quality assessment of unbound\tgranular base course \nmaterial\" Proceedings from the 9m Nordic Aggregate Research Conference, Reykjavik, Iceland, 2002.", "Australian testing procedure AG:PT/T053, \"Determination of permanent deformation and resilient modulus characteristic of unbound granular materials under drained conditions\" Austroads Working Group, Australia, 2007.", "A. Adu-Osei, \"Characterization of unbound granular materials\"PhD Dissertation, Department of Civil Engineering, Texas A&M University, College Station, Texas, 2000.", "AASHTO T 307-99, \"Determining the resilient modulus of soils and aggregate. materials\" AASHTO, Washington, D.C., USA, 1999.", "P. A. Cundall and 0. D. L. Strack, \"A discrete numerical model for granular assemblies\" Geotechnique, vol.29, pp.47-65, 1979.", "0. R. Walton, \"Explicit particle dynamics model for granular materials\" Numerical methods in Geomechanics, Z. Eisenstein, ed. A. A. Balkema Rotterdam, pp.1261-1268, 1983.", "C. Campbell and C. Brenan, \"Computer simulations of granular shear flow\" Journal of Fluid Mechanics, vol.151, pp.167-188, 1985.\n[10]\tR. K Rajamani, B. K. Mishra, R. Venugopal and A. Datta, \"Discrete element analysis of tumbling mills\" Powder Technology, vol. 09, pp. 105-112, 2000.\n[11]\tM. Moakher, T. Shinbrot and F. J. Muzzio, \"Experimentally validated computations of flow, mixing and segregation of non-cohesive grains in 3D tumbling blenders\" Powder Technology, vol. 109, pp. 58-71, 2000.\n[12]\tL. Cui and C. O'Sullivan, \"Exploring the macro and micro scale response of an idealised granular material in the direct shear apparatus\" Geotechnique vol. 56, pp. 455-468, 2006.\n[13]\tC. Bierwisch, T. Kraft, H. Riedel, and M. Moseler, \"Three-dimensional discrete element models for the granular statics and dynamics of powders in cavity filling\" Journal of Mechanics and Physics of Solids, vol.57 issue 1, pp. 10-31, 2009.\n[14] Steffen Abe, David Place, and Peter Mora, \"A parallel implementation \nof the lattice solid model for the simulation of rock mechanics and \nearthquake dynamics\", Pure and Applied Geophysics, vol. 161, pp. \n2265-2277, 2004. \n[15] ESyS-Particle: https://launchpad.net/esys-particle \n[16] ParaView: http://www.paraview.org \n[17] N. V. Rege, \"Computational modelling of granular materials\" Doctoral \nThesis, Department of Civil and Environmental Engineering, \nMassachusetts Institute of Technology, Cambridge, Massachusetts, \n1996. \n[18] P\u00f6schel and Schwager (2005) \"Computational granular dynamics\" \nSpringler-Verlag, 2005. \n[19] Y. P. Cheng, Y. Nakata and M. D. Bolton, \"Discrete element simulation \nof crushable soil\" Geotechnique, vol. 53, pp. 633-641, 2003. \n[20] Protocol P46, \"Resilient modulus of unbound granular, base/sub-base \nmaterials and subgrade soils\" Department of Transportation, U.S, 1996. \n[21] M. Zeghal, \"Discrete-Element method investigation of the resilient \nbehaviour of granular materials\" Journal of Transportation \nEngineering, ASCE, vol. 130 issue 4, pp. 503\u2013509, 2004."]}
format Text
author Nguyen, Bao Thach
Mohajerani, Abbas
author_facet Nguyen, Bao Thach
Mohajerani, Abbas
author_sort Nguyen, Bao Thach
title A 3 Dimensional Simulation Of The Repeated Load Triaxial Test
title_short A 3 Dimensional Simulation Of The Repeated Load Triaxial Test
title_full A 3 Dimensional Simulation Of The Repeated Load Triaxial Test
title_fullStr A 3 Dimensional Simulation Of The Repeated Load Triaxial Test
title_full_unstemmed A 3 Dimensional Simulation Of The Repeated Load Triaxial Test
title_sort 3 dimensional simulation of the repeated load triaxial test
publisher Zenodo
publishDate 2013
url https://dx.doi.org/10.5281/zenodo.1088098
https://zenodo.org/record/1088098
long_lat ENVELOPE(-62.967,-62.967,-65.017,-65.017)
ENVELOPE(166.533,166.533,-70.883,-70.883)
ENVELOPE(-62.152,-62.152,-71.433,-71.433)
geographic Bolton
Elliot
O'Sullivan
geographic_facet Bolton
Elliot
O'Sullivan
genre Iceland
genre_facet Iceland
op_relation https://dx.doi.org/10.5281/zenodo.1088097
op_rights Open Access
Creative Commons Attribution 4.0
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
op_rightsnorm CC-BY
op_doi https://doi.org/10.5281/zenodo.1088098
https://doi.org/10.5281/zenodo.1088097
_version_ 1766043907540385792
spelling ftdatacite:10.5281/zenodo.1088098 2023-05-15T16:53:22+02:00 A 3 Dimensional Simulation Of The Repeated Load Triaxial Test Nguyen, Bao Thach Mohajerani, Abbas 2013 https://dx.doi.org/10.5281/zenodo.1088098 https://zenodo.org/record/1088098 en eng Zenodo https://dx.doi.org/10.5281/zenodo.1088097 Open Access Creative Commons Attribution 4.0 https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess CC-BY Discrete element method repeated load triaxial pavement materials. Text Journal article article-journal ScholarlyArticle 2013 ftdatacite https://doi.org/10.5281/zenodo.1088098 https://doi.org/10.5281/zenodo.1088097 2021-11-05T12:55:41Z A typical flexible pavement structure consists of the surface, base, sub-base and subgrade soil. The loading traffic is transferred from the top layer with higher stiffness to the layer below with less stiffness. Under normal traffic loading, the behaviour of flexible pavement is very complex and can be predicted by using the repeated load triaxial test equipment in the laboratory. However, the nature of the repeated load triaxial testing procedure is considered time-consuming, complicated and expensive, and it is a challenge to carry out as a routine test in the laboratory. Therefore, the current paper proposes a numerical approach to simulate the repeated load triaxial test by employing the discrete element method. A sample with particle size ranging from 2.36mm to 19.0mm was constructed. Material properties, which included normal stiffness, shear stiffness, coefficient of friction, maximum dry density and particle density, were used as the input for the simulation. The sample was then subjected to a combination of deviator and confining stress and it was found that the discrete element method is able to simulate the repeated load triaxial test in the laboratory. : {"references": ["F. Lekarp, U. Isacsson and A. R. Dawson, \"State of the art. I: Resilient response of unbound aggregates\" Journal of Transportation Engineering, vol.126 issue 1, pp. 66-75, 2000.", "R. D. Barksdale, \"The aggregate handbook\" National Stone Association, Sheridan Books, Inc., Elliot Place, Washington, D.C, 2001.", "B. Magnusdottir and S. Erlingsson, \"Repeated load triaxial testing for quality assessment of unbound\tgranular base course \nmaterial\" Proceedings from the 9m Nordic Aggregate Research Conference, Reykjavik, Iceland, 2002.", "Australian testing procedure AG:PT/T053, \"Determination of permanent deformation and resilient modulus characteristic of unbound granular materials under drained conditions\" Austroads Working Group, Australia, 2007.", "A. Adu-Osei, \"Characterization of unbound granular materials\"PhD Dissertation, Department of Civil Engineering, Texas A&M University, College Station, Texas, 2000.", "AASHTO T 307-99, \"Determining the resilient modulus of soils and aggregate. materials\" AASHTO, Washington, D.C., USA, 1999.", "P. A. Cundall and 0. D. L. Strack, \"A discrete numerical model for granular assemblies\" Geotechnique, vol.29, pp.47-65, 1979.", "0. R. Walton, \"Explicit particle dynamics model for granular materials\" Numerical methods in Geomechanics, Z. Eisenstein, ed. A. A. Balkema Rotterdam, pp.1261-1268, 1983.", "C. Campbell and C. Brenan, \"Computer simulations of granular shear flow\" Journal of Fluid Mechanics, vol.151, pp.167-188, 1985.\n[10]\tR. K Rajamani, B. K. Mishra, R. Venugopal and A. Datta, \"Discrete element analysis of tumbling mills\" Powder Technology, vol. 09, pp. 105-112, 2000.\n[11]\tM. Moakher, T. Shinbrot and F. J. Muzzio, \"Experimentally validated computations of flow, mixing and segregation of non-cohesive grains in 3D tumbling blenders\" Powder Technology, vol. 109, pp. 58-71, 2000.\n[12]\tL. Cui and C. O'Sullivan, \"Exploring the macro and micro scale response of an idealised granular material in the direct shear apparatus\" Geotechnique vol. 56, pp. 455-468, 2006.\n[13]\tC. Bierwisch, T. Kraft, H. Riedel, and M. Moseler, \"Three-dimensional discrete element models for the granular statics and dynamics of powders in cavity filling\" Journal of Mechanics and Physics of Solids, vol.57 issue 1, pp. 10-31, 2009.\n[14] Steffen Abe, David Place, and Peter Mora, \"A parallel implementation \nof the lattice solid model for the simulation of rock mechanics and \nearthquake dynamics\", Pure and Applied Geophysics, vol. 161, pp. \n2265-2277, 2004. \n[15] ESyS-Particle: https://launchpad.net/esys-particle \n[16] ParaView: http://www.paraview.org \n[17] N. V. Rege, \"Computational modelling of granular materials\" Doctoral \nThesis, Department of Civil and Environmental Engineering, \nMassachusetts Institute of Technology, Cambridge, Massachusetts, \n1996. \n[18] P\u00f6schel and Schwager (2005) \"Computational granular dynamics\" \nSpringler-Verlag, 2005. \n[19] Y. P. Cheng, Y. Nakata and M. D. Bolton, \"Discrete element simulation \nof crushable soil\" Geotechnique, vol. 53, pp. 633-641, 2003. \n[20] Protocol P46, \"Resilient modulus of unbound granular, base/sub-base \nmaterials and subgrade soils\" Department of Transportation, U.S, 1996. \n[21] M. Zeghal, \"Discrete-Element method investigation of the resilient \nbehaviour of granular materials\" Journal of Transportation \nEngineering, ASCE, vol. 130 issue 4, pp. 503\u2013509, 2004."]} Text Iceland DataCite Metadata Store (German National Library of Science and Technology) Bolton ENVELOPE(-62.967,-62.967,-65.017,-65.017) Elliot ENVELOPE(166.533,166.533,-70.883,-70.883) O'Sullivan ENVELOPE(-62.152,-62.152,-71.433,-71.433)