Heat Transfer To Laminar Flow Over A Double Backward-Facing Step

Heat transfer and laminar air flow over a double backward-facing step numerically studied in this paper. The simulations was performed by using ANSYS ICEM for meshing process and using ANSYS fluent 14 (CFD) for solving. The k-ɛ standard model adopted with Reynolds number varied between 98.5 to 512 a...

Full description

Bibliographic Details
Main Authors: Togun, Hussein, Tuqa Abdulrazzaq, S. N. Kazi, A. Badarudin, M. K. A. Ariffin
Format: Text
Language:English
Published: Zenodo 2013
Subjects:
Online Access:https://dx.doi.org/10.5281/zenodo.1087932
https://zenodo.org/record/1087932
id ftdatacite:10.5281/zenodo.1087932
record_format openpolar
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language English
topic Laminar flow
Double backward
Separation flow
Recirculation flow.
spellingShingle Laminar flow
Double backward
Separation flow
Recirculation flow.
Togun, Hussein
Tuqa Abdulrazzaq
S. N. Kazi
A. Badarudin
M. K. A. Ariffin
Heat Transfer To Laminar Flow Over A Double Backward-Facing Step
topic_facet Laminar flow
Double backward
Separation flow
Recirculation flow.
description Heat transfer and laminar air flow over a double backward-facing step numerically studied in this paper. The simulations was performed by using ANSYS ICEM for meshing process and using ANSYS fluent 14 (CFD) for solving. The k-ɛ standard model adopted with Reynolds number varied between 98.5 to 512 and three step height at constant heat flux (q=2000 W/m2). The top of wall and bottom of upstream are insulated with bottom of downstream is heated. The results show increase in Nusselt number with increases of Reynolds number for all cases and the maximum of Nusselt number happens at the first step in compared to the second step. Due to increase of cross section area of downstream to generate sudden expansion then Nusselt number decrease but the profile of Nusselt number keep same trend for all cases where increase after the first and second steps. Recirculation region after the first and second steps are denoted by contour of streamline velocity. The higher augmentation of heat transfer rate observed for case 1 at Reynolds number of 512 and heat flux q=2000 W/m 2 . : {"references": ["D.E. Abbot, Kline, S.J., , Experimental investigations of subsonic\nturbulent flow over single and double backward-facing steps, Trans.\nA.S.M.E. D: J. Basic Eng., 84 (1962) 317\u2013325.", "R.J. Goldstein, Eriksen, V.L., Olson, R.M., Eckert, E.R.G, Laminar\nseparation reattachment, and transition of flow over a downstreamfacing\nstep. , Trans. ASME. D: J. Basic Eng. , 92 (1970) 732\u2013741.", "B.F. Armaly, F. Durst, J.C.F. Pereira, B. Sch\u00f6nung, Experimental and\ntheoretical investigation of backward-facing step flow, Journal of Fluid\nMechanics, 127 (1983) 473-496.", "H.I. Abu-Mulaweh, A review of research on laminar mixed convection\nflow over backward- and forward-facing steps, International Journal of\nThermal Sciences, 42(9) (2003) 897-909..", "D. Barkley, M.G.M. Gomes, R.D. Henderson, Three-dimensional\ninstability in flow over a backward-facing step, Journal of Fluid\nMechanics, 473 (2002) 167-190.", "S. Terhaar, A. Velazquez, J.R. Arias, M. Sanchez-Sanz, Experimental\nstudy on the unsteady laminar heat transfer downstream of a backwards\nfacing step, International Communications in Heat and Mass Transfer,\n37(5) (2010) 457-462.", "K. Abe, T. Kondoh, Y. Nagano, A new turbulence model for predicting\nfluid flow and heat transfer in separating and reattaching flows\u2014I. Flow\nfield calculations, International Journal of Heat and Mass Transfer, 37(1)\n(1994) 139-151.", "K. Abe, T. Kondoh, Y. Nagano, A new turbulence model for predicting\nfluid flow and heat transfer in separating and reattaching flows\u2014II.\nThermal field calculations, International Journal of Heat and Mass\nTransfer, 38(8) (1995) 1467-1481.", "J.C. Vogel, Heat Transfer and Fluid Mechanics Measurements in the\nTurbulent Reattaching Flow Behind a Backward-facing Step, Stanford\nUniversity, 1984.\n[10] T. P. Chiang and Tony W. H. Sheu, A numerical revisit of backwardfacing\nstep flow problem Journal of Phys. Fluids 11 (1999) 862-875.\n[11] N. Tylli, L. Kaiktsis, B. Ineichen, Sidewall effects in flow over a\nbackward-facing step: Experiments and numerical simulations, Physics\nof Fluids, 14(11) (2002) 3835-3845.\n[12] F. Durst and J. C. F. Pereira, Time dependent laminar backward facing\nstep flow in a two dimensional duct, J. Fluid Eng. , 110 (1988) 289-296.\n[13] M.B. G. Biswas, F. Durst, Backward-facing step flows for various\nexpansion ratios at low and moderate Reynolds number, Journal of\nFluids Engineering, 126 (2004 ) 362-374.\n[14] C.E. Tinney, L.S. Ukeiley, A study of a 3-D double backward-facing\nstep, Exp Fluids, 47(3) (2009) 427-438.\n[15] B.F. Armaly, A. Li, J.H. Nie, Measurements in three-dimensional\nlaminar separated flow, International Journal of Heat and Mass Transfer,\n46(19) (2003) 3573-3582."]}
format Text
author Togun, Hussein
Tuqa Abdulrazzaq
S. N. Kazi
A. Badarudin
M. K. A. Ariffin
author_facet Togun, Hussein
Tuqa Abdulrazzaq
S. N. Kazi
A. Badarudin
M. K. A. Ariffin
author_sort Togun, Hussein
title Heat Transfer To Laminar Flow Over A Double Backward-Facing Step
title_short Heat Transfer To Laminar Flow Over A Double Backward-Facing Step
title_full Heat Transfer To Laminar Flow Over A Double Backward-Facing Step
title_fullStr Heat Transfer To Laminar Flow Over A Double Backward-Facing Step
title_full_unstemmed Heat Transfer To Laminar Flow Over A Double Backward-Facing Step
title_sort heat transfer to laminar flow over a double backward-facing step
publisher Zenodo
publishDate 2013
url https://dx.doi.org/10.5281/zenodo.1087932
https://zenodo.org/record/1087932
long_lat ENVELOPE(162.650,162.650,-77.967,-77.967)
geographic Chiang
geographic_facet Chiang
genre tylli
genre_facet tylli
op_relation https://dx.doi.org/10.5281/zenodo.1087931
op_rights Open Access
Creative Commons Attribution 4.0
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
op_rightsnorm CC-BY
op_doi https://doi.org/10.5281/zenodo.1087932
https://doi.org/10.5281/zenodo.1087931
_version_ 1766230870482485248
spelling ftdatacite:10.5281/zenodo.1087932 2023-05-15T18:41:23+02:00 Heat Transfer To Laminar Flow Over A Double Backward-Facing Step Togun, Hussein Tuqa Abdulrazzaq S. N. Kazi A. Badarudin M. K. A. Ariffin 2013 https://dx.doi.org/10.5281/zenodo.1087932 https://zenodo.org/record/1087932 en eng Zenodo https://dx.doi.org/10.5281/zenodo.1087931 Open Access Creative Commons Attribution 4.0 https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess CC-BY Laminar flow Double backward Separation flow Recirculation flow. Text Journal article article-journal ScholarlyArticle 2013 ftdatacite https://doi.org/10.5281/zenodo.1087932 https://doi.org/10.5281/zenodo.1087931 2021-11-05T12:55:41Z Heat transfer and laminar air flow over a double backward-facing step numerically studied in this paper. The simulations was performed by using ANSYS ICEM for meshing process and using ANSYS fluent 14 (CFD) for solving. The k-ɛ standard model adopted with Reynolds number varied between 98.5 to 512 and three step height at constant heat flux (q=2000 W/m2). The top of wall and bottom of upstream are insulated with bottom of downstream is heated. The results show increase in Nusselt number with increases of Reynolds number for all cases and the maximum of Nusselt number happens at the first step in compared to the second step. Due to increase of cross section area of downstream to generate sudden expansion then Nusselt number decrease but the profile of Nusselt number keep same trend for all cases where increase after the first and second steps. Recirculation region after the first and second steps are denoted by contour of streamline velocity. The higher augmentation of heat transfer rate observed for case 1 at Reynolds number of 512 and heat flux q=2000 W/m 2 . : {"references": ["D.E. Abbot, Kline, S.J., , Experimental investigations of subsonic\nturbulent flow over single and double backward-facing steps, Trans.\nA.S.M.E. D: J. Basic Eng., 84 (1962) 317\u2013325.", "R.J. Goldstein, Eriksen, V.L., Olson, R.M., Eckert, E.R.G, Laminar\nseparation reattachment, and transition of flow over a downstreamfacing\nstep. , Trans. ASME. D: J. Basic Eng. , 92 (1970) 732\u2013741.", "B.F. Armaly, F. Durst, J.C.F. Pereira, B. Sch\u00f6nung, Experimental and\ntheoretical investigation of backward-facing step flow, Journal of Fluid\nMechanics, 127 (1983) 473-496.", "H.I. Abu-Mulaweh, A review of research on laminar mixed convection\nflow over backward- and forward-facing steps, International Journal of\nThermal Sciences, 42(9) (2003) 897-909..", "D. Barkley, M.G.M. Gomes, R.D. Henderson, Three-dimensional\ninstability in flow over a backward-facing step, Journal of Fluid\nMechanics, 473 (2002) 167-190.", "S. Terhaar, A. Velazquez, J.R. Arias, M. Sanchez-Sanz, Experimental\nstudy on the unsteady laminar heat transfer downstream of a backwards\nfacing step, International Communications in Heat and Mass Transfer,\n37(5) (2010) 457-462.", "K. Abe, T. Kondoh, Y. Nagano, A new turbulence model for predicting\nfluid flow and heat transfer in separating and reattaching flows\u2014I. Flow\nfield calculations, International Journal of Heat and Mass Transfer, 37(1)\n(1994) 139-151.", "K. Abe, T. Kondoh, Y. Nagano, A new turbulence model for predicting\nfluid flow and heat transfer in separating and reattaching flows\u2014II.\nThermal field calculations, International Journal of Heat and Mass\nTransfer, 38(8) (1995) 1467-1481.", "J.C. Vogel, Heat Transfer and Fluid Mechanics Measurements in the\nTurbulent Reattaching Flow Behind a Backward-facing Step, Stanford\nUniversity, 1984.\n[10] T. P. Chiang and Tony W. H. Sheu, A numerical revisit of backwardfacing\nstep flow problem Journal of Phys. Fluids 11 (1999) 862-875.\n[11] N. Tylli, L. Kaiktsis, B. Ineichen, Sidewall effects in flow over a\nbackward-facing step: Experiments and numerical simulations, Physics\nof Fluids, 14(11) (2002) 3835-3845.\n[12] F. Durst and J. C. F. Pereira, Time dependent laminar backward facing\nstep flow in a two dimensional duct, J. Fluid Eng. , 110 (1988) 289-296.\n[13] M.B. G. Biswas, F. Durst, Backward-facing step flows for various\nexpansion ratios at low and moderate Reynolds number, Journal of\nFluids Engineering, 126 (2004 ) 362-374.\n[14] C.E. Tinney, L.S. Ukeiley, A study of a 3-D double backward-facing\nstep, Exp Fluids, 47(3) (2009) 427-438.\n[15] B.F. Armaly, A. Li, J.H. Nie, Measurements in three-dimensional\nlaminar separated flow, International Journal of Heat and Mass Transfer,\n46(19) (2003) 3573-3582."]} Text tylli DataCite Metadata Store (German National Library of Science and Technology) Chiang ENVELOPE(162.650,162.650,-77.967,-77.967)