Leader-Following Consensus Criterion For Multi-Agent Systems With Probabilistic Self-Delay

This paper proposes a delay-dependent leader-following consensus condition of multi-agent systems with both communication delay and probabilistic self-delay. The proposed methods employ a suitable piecewise Lyapunov-Krasovskii functional and the average dwell time approach. New consensus criterion f...

Full description

Bibliographic Details
Main Authors: M.J. Park, K.H. Kim, O.M. Kwon
Format: Text
Language:English
Published: Zenodo 2012
Subjects:
ren
Online Access:https://dx.doi.org/10.5281/zenodo.1077495
https://zenodo.org/record/1077495
id ftdatacite:10.5281/zenodo.1077495
record_format openpolar
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language English
topic Multi-agent systems
probabilistic self-delay
consensus
Lyapunov method
LMI.
spellingShingle Multi-agent systems
probabilistic self-delay
consensus
Lyapunov method
LMI.
M.J. Park
K.H. Kim
O.M. Kwon
Leader-Following Consensus Criterion For Multi-Agent Systems With Probabilistic Self-Delay
topic_facet Multi-agent systems
probabilistic self-delay
consensus
Lyapunov method
LMI.
description This paper proposes a delay-dependent leader-following consensus condition of multi-agent systems with both communication delay and probabilistic self-delay. The proposed methods employ a suitable piecewise Lyapunov-Krasovskii functional and the average dwell time approach. New consensus criterion for the systems are established in terms of linear matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. Numerical example showed that the proposed method is effective. : {"references": ["R.O. Saber, J.A. Fax, R.M. Murray, \"Consensus and Cooperation in\nNetworked Multi-Agent Systems\", Proceedings of The IEEE, vol. 95,\n2007, pp. 215-233.", "J. Wang, D. Cheng, X. Hu, \"Consensus of Multi-agent Linear Dynamic\nSystems\", Asian J Control, vol. 10, 2008, pp. 144-155.", "W. Ren, \"Consensus strategies for cooperative control of vehicle formations\",\nIET Control Theory Appl., vol. 1, 2007, pp. 505-512.", "W. Ren, E. Atkins, \"Distributed multi-vehicle coordinated control via\nlocal information exchange\", Int. J. Robust Nonlinear Control, vol. 17,\n2007, pp. 1002-1033.", "A. Jadbabie, J. Lin, A.S. Morse, \"Coordination of groups of mobile\nautonomous agents using nearest neighbor rules\", IEEE Trans. Autom.\nControl, vol. 48, 2003, pp 988-1001.", "P. DeLellis, M. DiBernardo, F. Garofalo, D. Liuzza, \"Analysis and\nstabililty of consensus in networked control systems\", Appl. Math.\nComput., vol. 217, 2010, pp. 988-1000.", "D. Lee, M.W. Spong, \"Stable Flocking of Multiple Inertial Agents on\nBalanced Graphs\", IEEE Trans. Autom. Control, vol. 52, 2007, pp. 1469-\n1475.", "H. Kim, H. Shim, J.H. Seo, \"Output Consensus of Heterogeneous\nUncertain Linear Multi-Agent Systems\", IEEE Trans. Autom. Control,\nvol. 56, 2011, pp. 200-206.", "J.P. Hu, Y.G. Hong, \"Leader-following coordination of multi-agent systems\nwith coupling time delay\", Physica A, vol. 374, 2007, pp. 853-863.\n[10] Y.P. Tian, C.L. Liu, \"Consensus of Mulit-Agnet Systems With Diverse\nInput and Communication Delays\", IEEE Trans. Autom. Control, vol.\n53, 2008, pp. 2122-2128.\n[11] F. Xiao, L. Wang, \"State consensus for multi-agent systems with\nswitching topologies and time-varying delays\", Int. J. Control, vol. 79,\n2006, pp. 1277-1284.\n[12] J. Qin, H. Gao, W.X. Zheng, \"On average consensus in directed networks\nof agents with switching topology and time delay\", Int. J. Syst. Sci., vol.\n42, 2011, pp. 1947-1956.\n[13] S. Xu, J. Lam, \"A survey of linear matrix inequality techniques in\nstability analysis of delay systems\", Int. J. Syst. Sci., vol. 39, 2008,\npp. 1095-1113.\n[14] D. Liberzon, Switching in Systems and Control, Birkh\u252c\u00bfauser, Boston;\n2003.\n[15] S. Boyd, L.E. Ghaoui, E. Feron E, V. Balakrishnan, Linear Matrix\nInequalities in System and Control Theory, SIAM, Philadelphia; 1994.\n[16] Z.G. Wu, Ju H. Park, H. Su, J. Chu, \"Robust dissipativity analysis\nof nerual networks with time-vayring delay and randomly occurring\nuncertainties\", Nonlinear Dyn., doi:10.1007/s11071-012-0350-1.\n[17] J. Hu, Z. Wang, H. Gao, L.K. Stergioulas, \"Robust sliding mode\ncontrol for discrete stochastic systems with mixed time delays, randomly\noccurring uncertainties, and randomly occurring nonliearities\", IEEE\nTrans. Ind. Electron., vol. 59, 2012, pp. 3008-3015.\n[18] C. Godsil and G. Royle, Algebraic Graph Theory, Springer-Verlag, New\nYork; 2001.\n[19] W. Ni, D. Cheng, \"Leader-following consensus of multi-agent systems\nunder fixed and switching topologies\", Syst. Contr. Lett., vol. 59, 2010,\npp. 209-217.\n[20] M.C. de Oliveira, R.E. Skelton, Stability tests for constrained linear\nsystems, Springer-Verlag, Berlin; 2001, pp. 241-257.\n[21] K. Gu, \"An integral inequality in the stability problem of time-delay\nsystems\", in Proceedings of the 39th IEEE Conference on Decision and\nControl, Sydney, Australia, 2000, pp. 2805-2810.\n[22] S.H. Kim, P. Park, C.K. Jeong, \"Robust H\u221e stabilisation of networks\ncontrol systems with packet analyser\", IET Control Theory Appl., vol. 4,\n2010, pp. 1828-1837.\n[23] X.-M. Sun, J. Zhao, D.J. Hill, \"Stability and L2-gain analysis for\nswitched delay systems: A delay-dependent method\", Automatica, vol.\n42, 2006, pp. 1769-1774.\n[24] D. Zhang, L. Yu, \"Exponential stability analysis for neutral switched\nsystems with interval time-varying mixed delays and nonlinear perturbations\",\nNonlinear Anal.-Hybrid Syst., vol. 6, 2012, pp. 775-786."]}
format Text
author M.J. Park
K.H. Kim
O.M. Kwon
author_facet M.J. Park
K.H. Kim
O.M. Kwon
author_sort M.J. Park
title Leader-Following Consensus Criterion For Multi-Agent Systems With Probabilistic Self-Delay
title_short Leader-Following Consensus Criterion For Multi-Agent Systems With Probabilistic Self-Delay
title_full Leader-Following Consensus Criterion For Multi-Agent Systems With Probabilistic Self-Delay
title_fullStr Leader-Following Consensus Criterion For Multi-Agent Systems With Probabilistic Self-Delay
title_full_unstemmed Leader-Following Consensus Criterion For Multi-Agent Systems With Probabilistic Self-Delay
title_sort leader-following consensus criterion for multi-agent systems with probabilistic self-delay
publisher Zenodo
publishDate 2012
url https://dx.doi.org/10.5281/zenodo.1077495
https://zenodo.org/record/1077495
long_lat ENVELOPE(130.167,130.167,-66.250,-66.250)
geographic Morse
geographic_facet Morse
genre morse
ren
genre_facet morse
ren
op_relation https://dx.doi.org/10.5281/zenodo.1077494
op_rights Open Access
Creative Commons Attribution 4.0
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
op_rightsnorm CC-BY
op_doi https://doi.org/10.5281/zenodo.1077495
https://doi.org/10.5281/zenodo.1077494
_version_ 1766244411849572352
spelling ftdatacite:10.5281/zenodo.1077495 2023-05-15T18:50:39+02:00 Leader-Following Consensus Criterion For Multi-Agent Systems With Probabilistic Self-Delay M.J. Park K.H. Kim O.M. Kwon 2012 https://dx.doi.org/10.5281/zenodo.1077495 https://zenodo.org/record/1077495 en eng Zenodo https://dx.doi.org/10.5281/zenodo.1077494 Open Access Creative Commons Attribution 4.0 https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess CC-BY Multi-agent systems probabilistic self-delay consensus Lyapunov method LMI. Text Journal article article-journal ScholarlyArticle 2012 ftdatacite https://doi.org/10.5281/zenodo.1077495 https://doi.org/10.5281/zenodo.1077494 2021-11-05T12:55:41Z This paper proposes a delay-dependent leader-following consensus condition of multi-agent systems with both communication delay and probabilistic self-delay. The proposed methods employ a suitable piecewise Lyapunov-Krasovskii functional and the average dwell time approach. New consensus criterion for the systems are established in terms of linear matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. Numerical example showed that the proposed method is effective. : {"references": ["R.O. Saber, J.A. Fax, R.M. Murray, \"Consensus and Cooperation in\nNetworked Multi-Agent Systems\", Proceedings of The IEEE, vol. 95,\n2007, pp. 215-233.", "J. Wang, D. Cheng, X. Hu, \"Consensus of Multi-agent Linear Dynamic\nSystems\", Asian J Control, vol. 10, 2008, pp. 144-155.", "W. Ren, \"Consensus strategies for cooperative control of vehicle formations\",\nIET Control Theory Appl., vol. 1, 2007, pp. 505-512.", "W. Ren, E. Atkins, \"Distributed multi-vehicle coordinated control via\nlocal information exchange\", Int. J. Robust Nonlinear Control, vol. 17,\n2007, pp. 1002-1033.", "A. Jadbabie, J. Lin, A.S. Morse, \"Coordination of groups of mobile\nautonomous agents using nearest neighbor rules\", IEEE Trans. Autom.\nControl, vol. 48, 2003, pp 988-1001.", "P. DeLellis, M. DiBernardo, F. Garofalo, D. Liuzza, \"Analysis and\nstabililty of consensus in networked control systems\", Appl. Math.\nComput., vol. 217, 2010, pp. 988-1000.", "D. Lee, M.W. Spong, \"Stable Flocking of Multiple Inertial Agents on\nBalanced Graphs\", IEEE Trans. Autom. Control, vol. 52, 2007, pp. 1469-\n1475.", "H. Kim, H. Shim, J.H. Seo, \"Output Consensus of Heterogeneous\nUncertain Linear Multi-Agent Systems\", IEEE Trans. Autom. Control,\nvol. 56, 2011, pp. 200-206.", "J.P. Hu, Y.G. Hong, \"Leader-following coordination of multi-agent systems\nwith coupling time delay\", Physica A, vol. 374, 2007, pp. 853-863.\n[10] Y.P. Tian, C.L. Liu, \"Consensus of Mulit-Agnet Systems With Diverse\nInput and Communication Delays\", IEEE Trans. Autom. Control, vol.\n53, 2008, pp. 2122-2128.\n[11] F. Xiao, L. Wang, \"State consensus for multi-agent systems with\nswitching topologies and time-varying delays\", Int. J. Control, vol. 79,\n2006, pp. 1277-1284.\n[12] J. Qin, H. Gao, W.X. Zheng, \"On average consensus in directed networks\nof agents with switching topology and time delay\", Int. J. Syst. Sci., vol.\n42, 2011, pp. 1947-1956.\n[13] S. Xu, J. Lam, \"A survey of linear matrix inequality techniques in\nstability analysis of delay systems\", Int. J. Syst. Sci., vol. 39, 2008,\npp. 1095-1113.\n[14] D. Liberzon, Switching in Systems and Control, Birkh\u252c\u00bfauser, Boston;\n2003.\n[15] S. Boyd, L.E. Ghaoui, E. Feron E, V. Balakrishnan, Linear Matrix\nInequalities in System and Control Theory, SIAM, Philadelphia; 1994.\n[16] Z.G. Wu, Ju H. Park, H. Su, J. Chu, \"Robust dissipativity analysis\nof nerual networks with time-vayring delay and randomly occurring\nuncertainties\", Nonlinear Dyn., doi:10.1007/s11071-012-0350-1.\n[17] J. Hu, Z. Wang, H. Gao, L.K. Stergioulas, \"Robust sliding mode\ncontrol for discrete stochastic systems with mixed time delays, randomly\noccurring uncertainties, and randomly occurring nonliearities\", IEEE\nTrans. Ind. Electron., vol. 59, 2012, pp. 3008-3015.\n[18] C. Godsil and G. Royle, Algebraic Graph Theory, Springer-Verlag, New\nYork; 2001.\n[19] W. Ni, D. Cheng, \"Leader-following consensus of multi-agent systems\nunder fixed and switching topologies\", Syst. Contr. Lett., vol. 59, 2010,\npp. 209-217.\n[20] M.C. de Oliveira, R.E. Skelton, Stability tests for constrained linear\nsystems, Springer-Verlag, Berlin; 2001, pp. 241-257.\n[21] K. Gu, \"An integral inequality in the stability problem of time-delay\nsystems\", in Proceedings of the 39th IEEE Conference on Decision and\nControl, Sydney, Australia, 2000, pp. 2805-2810.\n[22] S.H. Kim, P. Park, C.K. Jeong, \"Robust H\u221e stabilisation of networks\ncontrol systems with packet analyser\", IET Control Theory Appl., vol. 4,\n2010, pp. 1828-1837.\n[23] X.-M. Sun, J. Zhao, D.J. Hill, \"Stability and L2-gain analysis for\nswitched delay systems: A delay-dependent method\", Automatica, vol.\n42, 2006, pp. 1769-1774.\n[24] D. Zhang, L. Yu, \"Exponential stability analysis for neutral switched\nsystems with interval time-varying mixed delays and nonlinear perturbations\",\nNonlinear Anal.-Hybrid Syst., vol. 6, 2012, pp. 775-786."]} Text morse ren DataCite Metadata Store (German National Library of Science and Technology) Morse ENVELOPE(130.167,130.167,-66.250,-66.250)