Double Immobilized Lipase For The Kinetic Resolution Of Secondary Alcohols

Sol-gel immobilization of enzymes, which can improve considerably their properties, is now one of the most used techniques. By deposition of the entrapped lipase on a solid support, a new and improved biocatalyst was obtained, which can be used with excellent results in acylation reactions. In this...

Full description

Bibliographic Details
Main Authors: A. Ursoiu, C. Paul, C. Marcu, M. Ungurean, F. Péter
Format: Text
Language:English
Published: Zenodo 2011
Subjects:
Online Access:https://dx.doi.org/10.5281/zenodo.1077344
https://zenodo.org/record/1077344
id ftdatacite:10.5281/zenodo.1077344
record_format openpolar
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language English
topic Double immobilization
enantioselectivity
kineticresolution
lipase
racemates
sol-gel entrapment.
spellingShingle Double immobilization
enantioselectivity
kineticresolution
lipase
racemates
sol-gel entrapment.
A. Ursoiu
C. Paul
C. Marcu
M. Ungurean
F. Péter
Double Immobilized Lipase For The Kinetic Resolution Of Secondary Alcohols
topic_facet Double immobilization
enantioselectivity
kineticresolution
lipase
racemates
sol-gel entrapment.
description Sol-gel immobilization of enzymes, which can improve considerably their properties, is now one of the most used techniques. By deposition of the entrapped lipase on a solid support, a new and improved biocatalyst was obtained, which can be used with excellent results in acylation reactions. In this paper, lipase B from Candida antarctica was double immobilized on different adsorbents. These biocatalysts were employed in the kinetic resolution of several aliphatic secondary alcohols in organic medium. High total recovery yields of enzymatic activity, up to 560%, were obtained. For all the studied alcohols the enantiomeric ratios E were over 200. The influence of the reaction medium was studied for the kinetic resolution of 2-pentanol. : {"references": ["T. Raghavendra, D. Sayania, and D. Madamwar, \"Synthesis of the\n\"green apple ester\" ethyl valerate in organic solvents by Candida rugosa\nlipase immobilized in MBGs in organic solvents: Effects of\nimmobilization and reaction parameters\", Journal of Molecular\nCatalysis B: Enzymatic, vol. 63, 2010, pp. 31-38.", "Y. Mine, L. Zhang, K. Fukunaga, and Y. Sugimura, \"Enhancement of\nenzyme activity and enantioselectivity by cyclopentyl methyl ether in the\ntransesterification catalyzed by Pseudomonas cepacia lipase colyophilized\nwith cyclodextrins\", Biotechnology Letters, vol. 27, 2005,\npp. 383-388.", "A. G. Cunha, A. T. da Silva, A. J. R. da Silva, L. W. Tinoco, R. V.\nAlmeida, R. B. de Alencastro, A. B. C. Simas, and D. M. G. Freire,\n\"Efficient kinetic resolution of (\u252c\u2592)-1,2-O-benzyl-myo-inositol with the\nlipase B of Candida antarctica\", Tetrahedron: Asymmetry, vol. 21,\n2010, pp. 2899-2903.", "J. H. Lee, K. Han, M.-J. Kim, and J. Park, \"Chemoenzymatic Kinetic\nResolution of Alcohols and Amines\", European Journal of Organic\nChemistry, 2010, pp. 999-1015.", "V. Gotor-Fernandez, R. Brieva, and V.Gotor, \"Useful biocatalysts for\nthe preparation of pharmaceuticals\", Journal of Molecular Catalysis B:\nEnzymatic, vol. 40, 2006, pp. 111-120.", "H.-M. Chen, P.-Y. Wang, and S.-W. Tsai, \"Carica papaya lipasecatalyzed\ntransesterification resolution of secandary alcohols in organic\nsolvents\", Journal of the Taiwan Institute of Chemical Engineers, vol.\n40, 2009, pp. 594-554.", "A. Tomin, D. Weiser, G. Hellner, Z. Bata, L. Cor\u251c\u00abci, F. P\u00e9ter, B. Koczka,\nand L. Poppe, \"Fine-tuning the second generation sol-gel lipase\nimmobilization with ternary alkoxysilane precursor systems\", Process\nBiochemistry, vol. 46, 2011, pp. 52-58.", "N. Kharrat, Y. B. Ali, S. Marzouk, Y.-T. Gargouri, and M. Karra-\nChaabouni, \"immobilization of Rhizopus oryzae Lipase on silica\naerogels by adsorption: Comparison with free enzyme\", Process\nBiochemistry, 2011, doi:10.1016/j.procbio.2011.01.029.", "F. Peter, L. Poppe, C. Kiss, E. Szocs-Biro, G. Preda, C. Zarcula, and A.\nOlteanu, \u00d4\u00c7\u00d7Influence of precursors and additives on microbial lipases\nstabilized by sol-gel entrapment\", Biocat. Biotrans., vol. 23, nr. 3/4,\n2005, pp. 251-260.\n[10] C. Zarcula, L. Cor\u251c\u00abci, R. Croitoru, A. Ursoiu, and F. P\u00e9ter, \"Preparation\nand properties of xerogels obtained by ionic liquid incorporation during\nthe immobilization of lipase by the sol-gel method\", Journal of\nMolecular Catalysis B: Enzymatic, vol. 65, 2010, pp. 79-86.\n[11] A. Uyanik, N. Sen, and M. Yilmaz, \"Improvement of catalytic activity of\nlipase from Candida rugosa via sol-gel encapsulation in the presence of\ncalix(aza)crown\", Bioresource Technology, 2011, doi:\n10.1016/j.biortech.2010.12.105.\n[12] F. P\u00e9ter, C. Paul, and A. Ursoiu, \"Application of ionic liquids to increase\nthe efficiency of lipase biocatalysis\", in \"Ionic Liquids: Applications and\nPerspectives\", edited by Alexander Kokorin, 2011, ISBN: 978-953-307-\n248-7, under publishing.\n[13] C. Mateo, J. M. Palomo, G. Fernandez-Lorente, J. M. Guisan, and R.\nFernandez-Lafuente, \"Improvement of enzyme activity, stability and\nselectivity via immobilization techniques\", Enzyme and Microbial\nTechnology, vol. 40, 2007, pp. 1451-1463.\n[14] H. P. Heldt-Hansen, M. Ishii, S. A. Patkar, T. T. Hansen, and P. Eigtved,\n\"A new immobilized positional nonspecific lipase for fat modification\nand ester synthesis\", ACS Symposium Series, vol. 389, 1989, pp. 158-\n172.\n[15] L. Brady, A. M. Brzozowski, Z. S. Derewenda, E. Dodson, G. Dodson,\nS. Tolley, J.P. Turkenburg, L. Christiansen, B. Huge-Jensen, L.\nNorskov, L. Thim, and U. Menge, \"A serine protease triad forms the\ncatalytic centre of a triacylglycerol lipase\", Nature, vol. 343, 1990, pp.\n767-770.\n[16] C.-S. Chen, Y. Fujimoto, G. Girdauskas, and C. J. Sih, \"Quantitative\nanalyses of biochemical kinetic resolutions of enantiomers\", Journal of\nthe American Chemical Society, vol. 104, 1982, pp. 7294-7299.\n[17] D. Zelaszczyk, and K. Kiec-Konowicz, \"Biocatalytic Approaches to\nOptically Active \u03b2-Blockers\", Current Medicinal Chemistry, vol. 14,\n2007, pp. 53-65\n[18] A. Ursoiu, C. Paul, C. Marcu, T. P\u00e9ter, and F. P\u00e9ter, \"Binary and\nternanry silane precursor systems for immobilization of lipases\", Annals\nof West University of Timisoara, vol. 16, no. 2, 2010, pp. 17-22.\n[19] C. Reichardt, \"Solvatochromic Dyes as Solvent Polarity Indicators\",\nChem. Rev., vol. 94, 1994, pp. 2319-2358."]}
format Text
author A. Ursoiu
C. Paul
C. Marcu
M. Ungurean
F. Péter
author_facet A. Ursoiu
C. Paul
C. Marcu
M. Ungurean
F. Péter
author_sort A. Ursoiu
title Double Immobilized Lipase For The Kinetic Resolution Of Secondary Alcohols
title_short Double Immobilized Lipase For The Kinetic Resolution Of Secondary Alcohols
title_full Double Immobilized Lipase For The Kinetic Resolution Of Secondary Alcohols
title_fullStr Double Immobilized Lipase For The Kinetic Resolution Of Secondary Alcohols
title_full_unstemmed Double Immobilized Lipase For The Kinetic Resolution Of Secondary Alcohols
title_sort double immobilized lipase for the kinetic resolution of secondary alcohols
publisher Zenodo
publishDate 2011
url https://dx.doi.org/10.5281/zenodo.1077344
https://zenodo.org/record/1077344
long_lat ENVELOPE(-62.750,-62.750,-75.767,-75.767)
ENVELOPE(-62.233,-62.233,-63.250,-63.250)
ENVELOPE(-61.250,-61.250,-62.633,-62.633)
ENVELOPE(-143.117,-143.117,-77.283,-77.283)
geographic Dodson
Fernandez
Rugosa
Tolley
geographic_facet Dodson
Fernandez
Rugosa
Tolley
genre Antarc*
Antarctica
genre_facet Antarc*
Antarctica
op_relation https://dx.doi.org/10.5281/zenodo.1077345
op_rights Open Access
Creative Commons Attribution 4.0
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
op_rightsnorm CC-BY
op_doi https://doi.org/10.5281/zenodo.1077344
https://doi.org/10.5281/zenodo.1077345
_version_ 1766270339487105024
spelling ftdatacite:10.5281/zenodo.1077344 2023-05-15T14:00:56+02:00 Double Immobilized Lipase For The Kinetic Resolution Of Secondary Alcohols A. Ursoiu C. Paul C. Marcu M. Ungurean F. Péter 2011 https://dx.doi.org/10.5281/zenodo.1077344 https://zenodo.org/record/1077344 en eng Zenodo https://dx.doi.org/10.5281/zenodo.1077345 Open Access Creative Commons Attribution 4.0 https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess CC-BY Double immobilization enantioselectivity kineticresolution lipase racemates sol-gel entrapment. Text Journal article article-journal ScholarlyArticle 2011 ftdatacite https://doi.org/10.5281/zenodo.1077344 https://doi.org/10.5281/zenodo.1077345 2021-11-05T12:55:41Z Sol-gel immobilization of enzymes, which can improve considerably their properties, is now one of the most used techniques. By deposition of the entrapped lipase on a solid support, a new and improved biocatalyst was obtained, which can be used with excellent results in acylation reactions. In this paper, lipase B from Candida antarctica was double immobilized on different adsorbents. These biocatalysts were employed in the kinetic resolution of several aliphatic secondary alcohols in organic medium. High total recovery yields of enzymatic activity, up to 560%, were obtained. For all the studied alcohols the enantiomeric ratios E were over 200. The influence of the reaction medium was studied for the kinetic resolution of 2-pentanol. : {"references": ["T. Raghavendra, D. Sayania, and D. Madamwar, \"Synthesis of the\n\"green apple ester\" ethyl valerate in organic solvents by Candida rugosa\nlipase immobilized in MBGs in organic solvents: Effects of\nimmobilization and reaction parameters\", Journal of Molecular\nCatalysis B: Enzymatic, vol. 63, 2010, pp. 31-38.", "Y. Mine, L. Zhang, K. Fukunaga, and Y. Sugimura, \"Enhancement of\nenzyme activity and enantioselectivity by cyclopentyl methyl ether in the\ntransesterification catalyzed by Pseudomonas cepacia lipase colyophilized\nwith cyclodextrins\", Biotechnology Letters, vol. 27, 2005,\npp. 383-388.", "A. G. Cunha, A. T. da Silva, A. J. R. da Silva, L. W. Tinoco, R. V.\nAlmeida, R. B. de Alencastro, A. B. C. Simas, and D. M. G. Freire,\n\"Efficient kinetic resolution of (\u252c\u2592)-1,2-O-benzyl-myo-inositol with the\nlipase B of Candida antarctica\", Tetrahedron: Asymmetry, vol. 21,\n2010, pp. 2899-2903.", "J. H. Lee, K. Han, M.-J. Kim, and J. Park, \"Chemoenzymatic Kinetic\nResolution of Alcohols and Amines\", European Journal of Organic\nChemistry, 2010, pp. 999-1015.", "V. Gotor-Fernandez, R. Brieva, and V.Gotor, \"Useful biocatalysts for\nthe preparation of pharmaceuticals\", Journal of Molecular Catalysis B:\nEnzymatic, vol. 40, 2006, pp. 111-120.", "H.-M. Chen, P.-Y. Wang, and S.-W. Tsai, \"Carica papaya lipasecatalyzed\ntransesterification resolution of secandary alcohols in organic\nsolvents\", Journal of the Taiwan Institute of Chemical Engineers, vol.\n40, 2009, pp. 594-554.", "A. Tomin, D. Weiser, G. Hellner, Z. Bata, L. Cor\u251c\u00abci, F. P\u00e9ter, B. Koczka,\nand L. Poppe, \"Fine-tuning the second generation sol-gel lipase\nimmobilization with ternary alkoxysilane precursor systems\", Process\nBiochemistry, vol. 46, 2011, pp. 52-58.", "N. Kharrat, Y. B. Ali, S. Marzouk, Y.-T. Gargouri, and M. Karra-\nChaabouni, \"immobilization of Rhizopus oryzae Lipase on silica\naerogels by adsorption: Comparison with free enzyme\", Process\nBiochemistry, 2011, doi:10.1016/j.procbio.2011.01.029.", "F. Peter, L. Poppe, C. Kiss, E. Szocs-Biro, G. Preda, C. Zarcula, and A.\nOlteanu, \u00d4\u00c7\u00d7Influence of precursors and additives on microbial lipases\nstabilized by sol-gel entrapment\", Biocat. Biotrans., vol. 23, nr. 3/4,\n2005, pp. 251-260.\n[10] C. Zarcula, L. Cor\u251c\u00abci, R. Croitoru, A. Ursoiu, and F. P\u00e9ter, \"Preparation\nand properties of xerogels obtained by ionic liquid incorporation during\nthe immobilization of lipase by the sol-gel method\", Journal of\nMolecular Catalysis B: Enzymatic, vol. 65, 2010, pp. 79-86.\n[11] A. Uyanik, N. Sen, and M. Yilmaz, \"Improvement of catalytic activity of\nlipase from Candida rugosa via sol-gel encapsulation in the presence of\ncalix(aza)crown\", Bioresource Technology, 2011, doi:\n10.1016/j.biortech.2010.12.105.\n[12] F. P\u00e9ter, C. Paul, and A. Ursoiu, \"Application of ionic liquids to increase\nthe efficiency of lipase biocatalysis\", in \"Ionic Liquids: Applications and\nPerspectives\", edited by Alexander Kokorin, 2011, ISBN: 978-953-307-\n248-7, under publishing.\n[13] C. Mateo, J. M. Palomo, G. Fernandez-Lorente, J. M. Guisan, and R.\nFernandez-Lafuente, \"Improvement of enzyme activity, stability and\nselectivity via immobilization techniques\", Enzyme and Microbial\nTechnology, vol. 40, 2007, pp. 1451-1463.\n[14] H. P. Heldt-Hansen, M. Ishii, S. A. Patkar, T. T. Hansen, and P. Eigtved,\n\"A new immobilized positional nonspecific lipase for fat modification\nand ester synthesis\", ACS Symposium Series, vol. 389, 1989, pp. 158-\n172.\n[15] L. Brady, A. M. Brzozowski, Z. S. Derewenda, E. Dodson, G. Dodson,\nS. Tolley, J.P. Turkenburg, L. Christiansen, B. Huge-Jensen, L.\nNorskov, L. Thim, and U. Menge, \"A serine protease triad forms the\ncatalytic centre of a triacylglycerol lipase\", Nature, vol. 343, 1990, pp.\n767-770.\n[16] C.-S. Chen, Y. Fujimoto, G. Girdauskas, and C. J. Sih, \"Quantitative\nanalyses of biochemical kinetic resolutions of enantiomers\", Journal of\nthe American Chemical Society, vol. 104, 1982, pp. 7294-7299.\n[17] D. Zelaszczyk, and K. Kiec-Konowicz, \"Biocatalytic Approaches to\nOptically Active \u03b2-Blockers\", Current Medicinal Chemistry, vol. 14,\n2007, pp. 53-65\n[18] A. Ursoiu, C. Paul, C. Marcu, T. P\u00e9ter, and F. P\u00e9ter, \"Binary and\nternanry silane precursor systems for immobilization of lipases\", Annals\nof West University of Timisoara, vol. 16, no. 2, 2010, pp. 17-22.\n[19] C. Reichardt, \"Solvatochromic Dyes as Solvent Polarity Indicators\",\nChem. Rev., vol. 94, 1994, pp. 2319-2358."]} Text Antarc* Antarctica DataCite Metadata Store (German National Library of Science and Technology) Dodson ENVELOPE(-62.750,-62.750,-75.767,-75.767) Fernandez ENVELOPE(-62.233,-62.233,-63.250,-63.250) Rugosa ENVELOPE(-61.250,-61.250,-62.633,-62.633) Tolley ENVELOPE(-143.117,-143.117,-77.283,-77.283)