Structural Characterization Of Piscine Globin Superfamily Proteins

Globin superfamily proteins including myoglobin and hemoglobin, have welcome new members recently, namely, cytoglobin, neuroglobin and globin X, though their physiological functions are still to be addressed. Fish are the excellent models for the study of these globins, but their characteristics hav...

Full description

Bibliographic Details
Main Author: Ochiai, Yoshihiro
Format: Text
Language:English
Published: Zenodo 2012
Subjects:
Online Access:https://dx.doi.org/10.5281/zenodo.1075845
https://zenodo.org/record/1075845
id ftdatacite:10.5281/zenodo.1075845
record_format openpolar
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language English
topic Globin
Superfamily
Protein
Fish
Structure
spellingShingle Globin
Superfamily
Protein
Fish
Structure
Ochiai, Yoshihiro
Structural Characterization Of Piscine Globin Superfamily Proteins
topic_facet Globin
Superfamily
Protein
Fish
Structure
description Globin superfamily proteins including myoglobin and hemoglobin, have welcome new members recently, namely, cytoglobin, neuroglobin and globin X, though their physiological functions are still to be addressed. Fish are the excellent models for the study of these globins, but their characteristics have not yet been discussed to date. In the present study, attempts have been made to characterize their structural uniqueness by making use of proteomics approach. This is the first comparative study on the characterization of globin superfamily proteins from fish. : {"references": ["A. Roesner, \"A globin gene of ancient evolutionary origin in lower\nvertebrates: Evidence for two distinct globin families in animals,\" Mol.\nBiol. Evol., vol. 22, 12-20, 2005", "T. Burmester, B. Weich, S. Reinhardt, and T. Hankeln, \"A vertebrate\nglobin expressed in the brain,\" Nature, vol.407, 520-523, 2000", "T. Burmester, B. Ebner, B. Weich, and T. Hankeln, \"Cytoglobin: a novel\nglobin type ubiquitously expressed in vertebrate tissues,\" Mol. Biol. Evol.,\nvol. 19, 416-421, 2002.", "D. Kugelstadt, M. Haberkamp, T. Hankeln, and T. Burmester,\n\"Neuroglobin, cytoglobin, and a novel, eye-specific globin from\nchicken,\" Biochem. Biophys. Res. Commun., vol. 325, 719-725, 2004.", "C. Fuchs, T. Burmester, and T. Hankeln, \"The amphibian globin gene\nrepertoire as revealed by the Xenopus genome,\" Cytogenet. Genome Res.,\n112, 296-306, 2006", "A. Roesner, C. Fuchs, T. Hankeln, and T. Burmester, \"A globin gene of\nancient evolutionary origin in lower vertebrates: evidence for two distinct\nglobin families in animals,\" Mol. Biol. Evol., vol. 22, 12-20, 2005.", "J. Fraser, L.V. de Mello, D. Ward, H.H. Rees, D.R. Williams, Y. Fang, A.\nBrass, A.Y. Gracey, and A.R. Cossins, \"Hypoxia-inducible myoglobin\nexpression in nonmuscle tissues,\" Proc. Natl. Acad. Sci. USA, vol. 103,\n2977-2981, 2006.", "H. Wajcman, L. Kiger, and M. C. Marden, \"Structure and function\nevolution in the superfamily of globins,\" Com. Rend. Biol., vol. 332,\npp.273-282, 2009", "S. Dewilde, L. Kiger, T. Burmester, T. Hankein, V. Baudin-Creuza, T.\nAerts, M.C. Marden, R. Caubergs, and L. Moens, \"Biochemical\ncharacterizaition and ligand binding properties of neuroglobin, a novel\nmember of the globin family,\" J. Biol. Chem., vol. 276, 2001.\n[10] Y. Enoki, K. Matsumura, Y. Ohga, H. Kohzuki, and M. Hattori, \"Oxygen\naffinities (p50) of myoglobins from four vertebrate species (Canis\nfamiliaris, Rattus norvegicus, Mus musculus and Gallus domesticus) as\ndetermined by a kinetic and an equilibrium method,\" Comp. Biochem.\nPhysiol. B, vol. 110, 193-199, 1995.\n[11] R.A. Meyer, H.L. Sweeney, and M.J. Kushmerick, \"A simple analysis of\nthe phosphocreatine shuttle,\" Am. J. Physiol., vol. 246, C365-C377,\n1984.\n[12] P.W. Hochachka, \"The metabolic implications of intracellular\ncirculation,\" Proc. Natl. Acad. Sci. USA, vol. 96, 12233-12239, 1999.\n[13] S.E. Flonta, S. Arena, A. Pisacane, P. Michieli, and A. Bardelli,\n\"Expression and functional regulation of myoglobin in epithelial\ncancers,\" Am. J. Pathol., vol. 175:201-206, 2009.\n[14] M. Brunori, \"Myoglobin strikes back,\" Protein Sci., vol. 19, 195-201,\n2010.\n[15] T. Burmester and T. Hankeln, \"What is the function of neuroglobin?,\" J.\nExp. Biol., vol. 212, 1423-1428, 2009.\n[16] T.A. Hall, \"BioEdit: a user-friendly biological sequence alignment editor\nand analysis program for Windows 95/98/NT,\" Nucleic Acids Symp. Ser.\nvol. 41, 95-98, 1999.\n[17] K. Tamura, J. Dudley, M. Nei, and S, Kumar, \"MEGA4: Molecular\nEvolutionary Genetics Analysis (MEGA) software version 4.0,\" Mol.\nBiol. Evol., vol. 24, 1596-1599, 2007.\n[18] J. Kyte and R.F. Doolittle, \"A simple method for displaying the\nhydrophopathic character of a protein,\" J. Mol. Biol., vol. 157, 105-132,\n1982.\n[19] T. Schwede, J. Kopp, N. Guex, and M.C. Peitsch, \"SWISS-MODEL: an\nautomated protein homology-modeling server,\" Nucleic Acids Res., vol.\n31, 3381-3385, 2003.\n[20] J.M. Stewart, J.A. Blakely, P.A. Karpowicz, E. Kalanxhi, B.J. Thatcher,\nand B.M. Martin, \"Unusually weak oxygen binding, physical properties,\npartial sequence, autoxidation rate and a potential phosphorylation site of\nbeluga whale (Delphinapterus leucas) myoglobin,\" Comp. Biochem.\nPhysiol. B, vol. 137, 401-412, 2004.\n[21] E.W. Grunwald and M.P. Richards, \"Studies with myoglobin variants\nindicate that released hemin is the primary promoter of lipid oxidation in\nwashed fish muscle,\" J. Agric. Food Chem., vol. 54, 4452-4460, 2006.\n[22] W.C.B. Regis, J. Fattori, M.M. Santoro, M. Jamin, and C.H.I. Ramos,\n\"On the difference in stability between horse and sperm whale\nmyoglobins,\" Arch. Biochem. Biophys., 436, 168-177, 2005.\n[23] Y. Ochiai, N. Ueki, and S. Watabe, \"Effects of point mutations on the\nstructural stability of tuna myoglobins,\" Comp. Biochem. Physiol. B, vol.\n153, 223-228, 2009.\n[24] N. Ueki and Y Ochiai, \"Primary structure and thermostability of bigeye\ntuna myoglobin in relation to those from other scombridae fish,\" Fish.\nSci., vol. 70, 875-884, 2004.\n[25] H.S. Ajoula, M.T. Wilson, and I.E.G. Morrison, \"Functional\nconsequences of haem orientational disorder in sperm-whale and\nyellow-fin-tuna myoglobins,\" Biochem. J., vol. 243, 205-210, 1987.\n[26] A. Wawrowski, F. Gerlach, T. Hankein, and T. Burmester, \"Changes of\nglobin expression in the Japanese medaka (Oryzias latipes) in response to\nacute and chronic hypoxia,\" J. Comp. Physiol. B, vol. 188, 199-208,\n2011.\n[27] A.Roesner, S.A. Mitz, T. Hankeln, and T. Burmester, \"Globins and\nhypoxia adaptation in the goldfish, Carassius auratus,\" FEBS J., vol. 275,\n3633-3643, 2008."]}
format Text
author Ochiai, Yoshihiro
author_facet Ochiai, Yoshihiro
author_sort Ochiai, Yoshihiro
title Structural Characterization Of Piscine Globin Superfamily Proteins
title_short Structural Characterization Of Piscine Globin Superfamily Proteins
title_full Structural Characterization Of Piscine Globin Superfamily Proteins
title_fullStr Structural Characterization Of Piscine Globin Superfamily Proteins
title_full_unstemmed Structural Characterization Of Piscine Globin Superfamily Proteins
title_sort structural characterization of piscine globin superfamily proteins
publisher Zenodo
publishDate 2012
url https://dx.doi.org/10.5281/zenodo.1075845
https://zenodo.org/record/1075845
long_lat ENVELOPE(-67.017,-67.017,-68.833,-68.833)
ENVELOPE(167.217,167.217,-77.483,-77.483)
ENVELOPE(-68.666,-68.666,-67.233,-67.233)
ENVELOPE(-63.533,-63.533,-66.167,-66.167)
ENVELOPE(-59.700,-59.700,-62.500,-62.500)
ENVELOPE(177.200,177.200,-84.200,-84.200)
geographic Baudin
Fang
Fuchs
Morrison
Ramos
Reinhardt
geographic_facet Baudin
Fang
Fuchs
Morrison
Ramos
Reinhardt
genre Delphinapterus leucas
Sperm whale
genre_facet Delphinapterus leucas
Sperm whale
op_relation https://dx.doi.org/10.5281/zenodo.1075846
op_rights Open Access
Creative Commons Attribution 4.0
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
op_rightsnorm CC-BY
op_doi https://doi.org/10.5281/zenodo.1075845
https://doi.org/10.5281/zenodo.1075846
_version_ 1766396493585973248
spelling ftdatacite:10.5281/zenodo.1075845 2023-05-15T16:00:30+02:00 Structural Characterization Of Piscine Globin Superfamily Proteins Ochiai, Yoshihiro 2012 https://dx.doi.org/10.5281/zenodo.1075845 https://zenodo.org/record/1075845 en eng Zenodo https://dx.doi.org/10.5281/zenodo.1075846 Open Access Creative Commons Attribution 4.0 https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess CC-BY Globin Superfamily Protein Fish Structure Text Journal article article-journal ScholarlyArticle 2012 ftdatacite https://doi.org/10.5281/zenodo.1075845 https://doi.org/10.5281/zenodo.1075846 2021-11-05T12:55:41Z Globin superfamily proteins including myoglobin and hemoglobin, have welcome new members recently, namely, cytoglobin, neuroglobin and globin X, though their physiological functions are still to be addressed. Fish are the excellent models for the study of these globins, but their characteristics have not yet been discussed to date. In the present study, attempts have been made to characterize their structural uniqueness by making use of proteomics approach. This is the first comparative study on the characterization of globin superfamily proteins from fish. : {"references": ["A. Roesner, \"A globin gene of ancient evolutionary origin in lower\nvertebrates: Evidence for two distinct globin families in animals,\" Mol.\nBiol. Evol., vol. 22, 12-20, 2005", "T. Burmester, B. Weich, S. Reinhardt, and T. Hankeln, \"A vertebrate\nglobin expressed in the brain,\" Nature, vol.407, 520-523, 2000", "T. Burmester, B. Ebner, B. Weich, and T. Hankeln, \"Cytoglobin: a novel\nglobin type ubiquitously expressed in vertebrate tissues,\" Mol. Biol. Evol.,\nvol. 19, 416-421, 2002.", "D. Kugelstadt, M. Haberkamp, T. Hankeln, and T. Burmester,\n\"Neuroglobin, cytoglobin, and a novel, eye-specific globin from\nchicken,\" Biochem. Biophys. Res. Commun., vol. 325, 719-725, 2004.", "C. Fuchs, T. Burmester, and T. Hankeln, \"The amphibian globin gene\nrepertoire as revealed by the Xenopus genome,\" Cytogenet. Genome Res.,\n112, 296-306, 2006", "A. Roesner, C. Fuchs, T. Hankeln, and T. Burmester, \"A globin gene of\nancient evolutionary origin in lower vertebrates: evidence for two distinct\nglobin families in animals,\" Mol. Biol. Evol., vol. 22, 12-20, 2005.", "J. Fraser, L.V. de Mello, D. Ward, H.H. Rees, D.R. Williams, Y. Fang, A.\nBrass, A.Y. Gracey, and A.R. Cossins, \"Hypoxia-inducible myoglobin\nexpression in nonmuscle tissues,\" Proc. Natl. Acad. Sci. USA, vol. 103,\n2977-2981, 2006.", "H. Wajcman, L. Kiger, and M. C. Marden, \"Structure and function\nevolution in the superfamily of globins,\" Com. Rend. Biol., vol. 332,\npp.273-282, 2009", "S. Dewilde, L. Kiger, T. Burmester, T. Hankein, V. Baudin-Creuza, T.\nAerts, M.C. Marden, R. Caubergs, and L. Moens, \"Biochemical\ncharacterizaition and ligand binding properties of neuroglobin, a novel\nmember of the globin family,\" J. Biol. Chem., vol. 276, 2001.\n[10] Y. Enoki, K. Matsumura, Y. Ohga, H. Kohzuki, and M. Hattori, \"Oxygen\naffinities (p50) of myoglobins from four vertebrate species (Canis\nfamiliaris, Rattus norvegicus, Mus musculus and Gallus domesticus) as\ndetermined by a kinetic and an equilibrium method,\" Comp. Biochem.\nPhysiol. B, vol. 110, 193-199, 1995.\n[11] R.A. Meyer, H.L. Sweeney, and M.J. Kushmerick, \"A simple analysis of\nthe phosphocreatine shuttle,\" Am. J. Physiol., vol. 246, C365-C377,\n1984.\n[12] P.W. Hochachka, \"The metabolic implications of intracellular\ncirculation,\" Proc. Natl. Acad. Sci. USA, vol. 96, 12233-12239, 1999.\n[13] S.E. Flonta, S. Arena, A. Pisacane, P. Michieli, and A. Bardelli,\n\"Expression and functional regulation of myoglobin in epithelial\ncancers,\" Am. J. Pathol., vol. 175:201-206, 2009.\n[14] M. Brunori, \"Myoglobin strikes back,\" Protein Sci., vol. 19, 195-201,\n2010.\n[15] T. Burmester and T. Hankeln, \"What is the function of neuroglobin?,\" J.\nExp. Biol., vol. 212, 1423-1428, 2009.\n[16] T.A. Hall, \"BioEdit: a user-friendly biological sequence alignment editor\nand analysis program for Windows 95/98/NT,\" Nucleic Acids Symp. Ser.\nvol. 41, 95-98, 1999.\n[17] K. Tamura, J. Dudley, M. Nei, and S, Kumar, \"MEGA4: Molecular\nEvolutionary Genetics Analysis (MEGA) software version 4.0,\" Mol.\nBiol. Evol., vol. 24, 1596-1599, 2007.\n[18] J. Kyte and R.F. Doolittle, \"A simple method for displaying the\nhydrophopathic character of a protein,\" J. Mol. Biol., vol. 157, 105-132,\n1982.\n[19] T. Schwede, J. Kopp, N. Guex, and M.C. Peitsch, \"SWISS-MODEL: an\nautomated protein homology-modeling server,\" Nucleic Acids Res., vol.\n31, 3381-3385, 2003.\n[20] J.M. Stewart, J.A. Blakely, P.A. Karpowicz, E. Kalanxhi, B.J. Thatcher,\nand B.M. Martin, \"Unusually weak oxygen binding, physical properties,\npartial sequence, autoxidation rate and a potential phosphorylation site of\nbeluga whale (Delphinapterus leucas) myoglobin,\" Comp. Biochem.\nPhysiol. B, vol. 137, 401-412, 2004.\n[21] E.W. Grunwald and M.P. Richards, \"Studies with myoglobin variants\nindicate that released hemin is the primary promoter of lipid oxidation in\nwashed fish muscle,\" J. Agric. Food Chem., vol. 54, 4452-4460, 2006.\n[22] W.C.B. Regis, J. Fattori, M.M. Santoro, M. Jamin, and C.H.I. Ramos,\n\"On the difference in stability between horse and sperm whale\nmyoglobins,\" Arch. Biochem. Biophys., 436, 168-177, 2005.\n[23] Y. Ochiai, N. Ueki, and S. Watabe, \"Effects of point mutations on the\nstructural stability of tuna myoglobins,\" Comp. Biochem. Physiol. B, vol.\n153, 223-228, 2009.\n[24] N. Ueki and Y Ochiai, \"Primary structure and thermostability of bigeye\ntuna myoglobin in relation to those from other scombridae fish,\" Fish.\nSci., vol. 70, 875-884, 2004.\n[25] H.S. Ajoula, M.T. Wilson, and I.E.G. Morrison, \"Functional\nconsequences of haem orientational disorder in sperm-whale and\nyellow-fin-tuna myoglobins,\" Biochem. J., vol. 243, 205-210, 1987.\n[26] A. Wawrowski, F. Gerlach, T. Hankein, and T. Burmester, \"Changes of\nglobin expression in the Japanese medaka (Oryzias latipes) in response to\nacute and chronic hypoxia,\" J. Comp. Physiol. B, vol. 188, 199-208,\n2011.\n[27] A.Roesner, S.A. Mitz, T. Hankeln, and T. Burmester, \"Globins and\nhypoxia adaptation in the goldfish, Carassius auratus,\" FEBS J., vol. 275,\n3633-3643, 2008."]} Text Delphinapterus leucas Sperm whale DataCite Metadata Store (German National Library of Science and Technology) Baudin ENVELOPE(-67.017,-67.017,-68.833,-68.833) Fang ENVELOPE(167.217,167.217,-77.483,-77.483) Fuchs ENVELOPE(-68.666,-68.666,-67.233,-67.233) Morrison ENVELOPE(-63.533,-63.533,-66.167,-66.167) Ramos ENVELOPE(-59.700,-59.700,-62.500,-62.500) Reinhardt ENVELOPE(177.200,177.200,-84.200,-84.200)