Structural Characterization Of Piscine Globin Superfamily Proteins

Globin superfamily proteins including myoglobin and hemoglobin, have welcome new members recently, namely, cytoglobin, neuroglobin and globin X, though their physiological functions are still to be addressed. Fish are the excellent models for the study of these globins, but their characteristics hav...

Full description

Bibliographic Details
Main Author: Ochiai, Yoshihiro
Format: Text
Language:English
Published: Zenodo 2012
Subjects:
Online Access:https://dx.doi.org/10.5281/zenodo.1075845
https://zenodo.org/record/1075845
Description
Summary:Globin superfamily proteins including myoglobin and hemoglobin, have welcome new members recently, namely, cytoglobin, neuroglobin and globin X, though their physiological functions are still to be addressed. Fish are the excellent models for the study of these globins, but their characteristics have not yet been discussed to date. In the present study, attempts have been made to characterize their structural uniqueness by making use of proteomics approach. This is the first comparative study on the characterization of globin superfamily proteins from fish. : {"references": ["A. Roesner, \"A globin gene of ancient evolutionary origin in lower\nvertebrates: Evidence for two distinct globin families in animals,\" Mol.\nBiol. Evol., vol. 22, 12-20, 2005", "T. Burmester, B. Weich, S. Reinhardt, and T. Hankeln, \"A vertebrate\nglobin expressed in the brain,\" Nature, vol.407, 520-523, 2000", "T. Burmester, B. Ebner, B. Weich, and T. Hankeln, \"Cytoglobin: a novel\nglobin type ubiquitously expressed in vertebrate tissues,\" Mol. Biol. Evol.,\nvol. 19, 416-421, 2002.", "D. Kugelstadt, M. Haberkamp, T. Hankeln, and T. Burmester,\n\"Neuroglobin, cytoglobin, and a novel, eye-specific globin from\nchicken,\" Biochem. Biophys. Res. Commun., vol. 325, 719-725, 2004.", "C. Fuchs, T. Burmester, and T. Hankeln, \"The amphibian globin gene\nrepertoire as revealed by the Xenopus genome,\" Cytogenet. Genome Res.,\n112, 296-306, 2006", "A. Roesner, C. Fuchs, T. Hankeln, and T. Burmester, \"A globin gene of\nancient evolutionary origin in lower vertebrates: evidence for two distinct\nglobin families in animals,\" Mol. Biol. Evol., vol. 22, 12-20, 2005.", "J. Fraser, L.V. de Mello, D. Ward, H.H. Rees, D.R. Williams, Y. Fang, A.\nBrass, A.Y. Gracey, and A.R. Cossins, \"Hypoxia-inducible myoglobin\nexpression in nonmuscle tissues,\" Proc. Natl. Acad. Sci. USA, vol. 103,\n2977-2981, 2006.", "H. Wajcman, L. Kiger, and M. C. Marden, \"Structure and function\nevolution in the superfamily of globins,\" Com. Rend. Biol., vol. 332,\npp.273-282, 2009", "S. Dewilde, L. Kiger, T. Burmester, T. Hankein, V. Baudin-Creuza, T.\nAerts, M.C. Marden, R. Caubergs, and L. Moens, \"Biochemical\ncharacterizaition and ligand binding properties of neuroglobin, a novel\nmember of the globin family,\" J. Biol. Chem., vol. 276, 2001.\n[10] Y. Enoki, K. Matsumura, Y. Ohga, H. Kohzuki, and M. Hattori, \"Oxygen\naffinities (p50) of myoglobins from four vertebrate species (Canis\nfamiliaris, Rattus norvegicus, Mus musculus and Gallus domesticus) as\ndetermined by a kinetic and an equilibrium method,\" Comp. Biochem.\nPhysiol. B, vol. 110, 193-199, 1995.\n[11] R.A. Meyer, H.L. Sweeney, and M.J. Kushmerick, \"A simple analysis of\nthe phosphocreatine shuttle,\" Am. J. Physiol., vol. 246, C365-C377,\n1984.\n[12] P.W. Hochachka, \"The metabolic implications of intracellular\ncirculation,\" Proc. Natl. Acad. Sci. USA, vol. 96, 12233-12239, 1999.\n[13] S.E. Flonta, S. Arena, A. Pisacane, P. Michieli, and A. Bardelli,\n\"Expression and functional regulation of myoglobin in epithelial\ncancers,\" Am. J. Pathol., vol. 175:201-206, 2009.\n[14] M. Brunori, \"Myoglobin strikes back,\" Protein Sci., vol. 19, 195-201,\n2010.\n[15] T. Burmester and T. Hankeln, \"What is the function of neuroglobin?,\" J.\nExp. Biol., vol. 212, 1423-1428, 2009.\n[16] T.A. Hall, \"BioEdit: a user-friendly biological sequence alignment editor\nand analysis program for Windows 95/98/NT,\" Nucleic Acids Symp. Ser.\nvol. 41, 95-98, 1999.\n[17] K. Tamura, J. Dudley, M. Nei, and S, Kumar, \"MEGA4: Molecular\nEvolutionary Genetics Analysis (MEGA) software version 4.0,\" Mol.\nBiol. Evol., vol. 24, 1596-1599, 2007.\n[18] J. Kyte and R.F. Doolittle, \"A simple method for displaying the\nhydrophopathic character of a protein,\" J. Mol. Biol., vol. 157, 105-132,\n1982.\n[19] T. Schwede, J. Kopp, N. Guex, and M.C. Peitsch, \"SWISS-MODEL: an\nautomated protein homology-modeling server,\" Nucleic Acids Res., vol.\n31, 3381-3385, 2003.\n[20] J.M. Stewart, J.A. Blakely, P.A. Karpowicz, E. Kalanxhi, B.J. Thatcher,\nand B.M. Martin, \"Unusually weak oxygen binding, physical properties,\npartial sequence, autoxidation rate and a potential phosphorylation site of\nbeluga whale (Delphinapterus leucas) myoglobin,\" Comp. Biochem.\nPhysiol. B, vol. 137, 401-412, 2004.\n[21] E.W. Grunwald and M.P. Richards, \"Studies with myoglobin variants\nindicate that released hemin is the primary promoter of lipid oxidation in\nwashed fish muscle,\" J. Agric. Food Chem., vol. 54, 4452-4460, 2006.\n[22] W.C.B. Regis, J. Fattori, M.M. Santoro, M. Jamin, and C.H.I. Ramos,\n\"On the difference in stability between horse and sperm whale\nmyoglobins,\" Arch. Biochem. Biophys., 436, 168-177, 2005.\n[23] Y. Ochiai, N. Ueki, and S. Watabe, \"Effects of point mutations on the\nstructural stability of tuna myoglobins,\" Comp. Biochem. Physiol. B, vol.\n153, 223-228, 2009.\n[24] N. Ueki and Y Ochiai, \"Primary structure and thermostability of bigeye\ntuna myoglobin in relation to those from other scombridae fish,\" Fish.\nSci., vol. 70, 875-884, 2004.\n[25] H.S. Ajoula, M.T. Wilson, and I.E.G. Morrison, \"Functional\nconsequences of haem orientational disorder in sperm-whale and\nyellow-fin-tuna myoglobins,\" Biochem. J., vol. 243, 205-210, 1987.\n[26] A. Wawrowski, F. Gerlach, T. Hankein, and T. Burmester, \"Changes of\nglobin expression in the Japanese medaka (Oryzias latipes) in response to\nacute and chronic hypoxia,\" J. Comp. Physiol. B, vol. 188, 199-208,\n2011.\n[27] A.Roesner, S.A. Mitz, T. Hankeln, and T. Burmester, \"Globins and\nhypoxia adaptation in the goldfish, Carassius auratus,\" FEBS J., vol. 275,\n3633-3643, 2008."]}