Data from: Does the niche-breadth or trade-off hypothesis explain the abundance-occupancy relationship in avian haemosporidia?

Two hypotheses have been proposed to explain the abundance-occupancy relationship (AOR) in parasites. The niche-breadth hypothesis suggests that host generalists are more abundant and efficient at colonizing different host communities than specialists. The trade-off hypothesis argues that host speci...

Full description

Bibliographic Details
Main Authors: Drovetski, Sergei V., Aghayan, Sargis A., Mata, Vanessa A., Lopes, Ricardo J., Mode, Nicolle A., Harvey, Johanna A., Voelker, Gary
Format: Dataset
Language:English
Published: Dryad 2014
Subjects:
Online Access:https://dx.doi.org/10.5061/dryad.r8bj6
http://datadryad.org/stash/dataset/doi:10.5061/dryad.r8bj6
id ftdatacite:10.5061/dryad.r8bj6
record_format openpolar
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language English
topic Anthus spinoletta
Ficedula parva
host specialization
Luscinia luscinia
Periparus ater
Acrocephalus palustris
Alectoris Chukar
Cettia cetti
Sturnus unicolor
Lanius meridionalis
Anthus trivialis
Passer hispaniolensis
Phylloscopus sindianus
Streptopelia turtur
Strix aluco
Upupa epops
Emberiza hortulana
Emberiza melanocephala
Sylvia crassirostris
Saxicola maurus
Passer domesticus
Poecile lugubris
Sylvia borin
Carduelis cannabina
Picus vaillantii
Sylvia curruca
blood parasites
Sylvia deserticola
Hippolais polyglotta
Holocene
Galerida cristata
Certhia brachydactyla
Certhia familiaris
Phoenicurus moussieri
Otus scops
Host Parasite Interactions
Cyanistes caeruleus
Ficedula semitorquata
Motacilla cinerea
Sitta krueperi
Cyanopica cooki
Cyanistes teneriffae
Emberiza calandra
Lanius senator
Serinus serinus
Athene noctua
Lanius collurio
Sylvia hortensis
Sylvia communis
Corvus corone
Hirundo rustica
Eremophila alpestris
Erithacus rubecula
Irania gutturalis
Pyrrhula pyrrhula
Motacilla flava
Prunella ocularis
Turdus viscivorus
Luscinia megarhynchos
Oenanthe deserti
Sylvia atricapilla
Muscicapa striata
Plasmodium
Sylvia cantillans
Oenanthe leucura
Haemosporidia
Turdus philomelos
Phoenicurus phoenicurus
Sitta europaea
Aegithalos caudatus
Troglodytes troglodytes
Petronia petronia
Turdus merula
abundance-occupancy relationship
Rhodopechys sanguineus
Carduelis flavirostris
Falco naumanni
Fringilla coelebs
Phylloscopus sibilatrix
Phoenicurus ochruros
Oenanthe oenanthe
Lophophanes cristatus
Pycnonotus barbatus
Carduelis carduelis
Carpodacus erythrinus
Phylloscopus collybita
Sylvia melanocephala
Monticola saxatilis
Coccothraustes coccothraustes
Cercotrichas galactotes
Prunella modularis
Sylvia nisoria
Falco tinnunculus
Parus major
Haemoproteus
Alectoris rufa
Hippolais languida
Ficedula speculigera
Dendrocopos minor
Dendrocopos major
Emberiza cia
Saxicola rubetra
Sylvia undata
Garrulus glandarius
Leucocytozoon
Columba palumbus
Picus viridis
Phylloscopus nitidus
Iduna opaca
Riparia riparia
Chloris chloris
Emberiza cirlus
spellingShingle Anthus spinoletta
Ficedula parva
host specialization
Luscinia luscinia
Periparus ater
Acrocephalus palustris
Alectoris Chukar
Cettia cetti
Sturnus unicolor
Lanius meridionalis
Anthus trivialis
Passer hispaniolensis
Phylloscopus sindianus
Streptopelia turtur
Strix aluco
Upupa epops
Emberiza hortulana
Emberiza melanocephala
Sylvia crassirostris
Saxicola maurus
Passer domesticus
Poecile lugubris
Sylvia borin
Carduelis cannabina
Picus vaillantii
Sylvia curruca
blood parasites
Sylvia deserticola
Hippolais polyglotta
Holocene
Galerida cristata
Certhia brachydactyla
Certhia familiaris
Phoenicurus moussieri
Otus scops
Host Parasite Interactions
Cyanistes caeruleus
Ficedula semitorquata
Motacilla cinerea
Sitta krueperi
Cyanopica cooki
Cyanistes teneriffae
Emberiza calandra
Lanius senator
Serinus serinus
Athene noctua
Lanius collurio
Sylvia hortensis
Sylvia communis
Corvus corone
Hirundo rustica
Eremophila alpestris
Erithacus rubecula
Irania gutturalis
Pyrrhula pyrrhula
Motacilla flava
Prunella ocularis
Turdus viscivorus
Luscinia megarhynchos
Oenanthe deserti
Sylvia atricapilla
Muscicapa striata
Plasmodium
Sylvia cantillans
Oenanthe leucura
Haemosporidia
Turdus philomelos
Phoenicurus phoenicurus
Sitta europaea
Aegithalos caudatus
Troglodytes troglodytes
Petronia petronia
Turdus merula
abundance-occupancy relationship
Rhodopechys sanguineus
Carduelis flavirostris
Falco naumanni
Fringilla coelebs
Phylloscopus sibilatrix
Phoenicurus ochruros
Oenanthe oenanthe
Lophophanes cristatus
Pycnonotus barbatus
Carduelis carduelis
Carpodacus erythrinus
Phylloscopus collybita
Sylvia melanocephala
Monticola saxatilis
Coccothraustes coccothraustes
Cercotrichas galactotes
Prunella modularis
Sylvia nisoria
Falco tinnunculus
Parus major
Haemoproteus
Alectoris rufa
Hippolais languida
Ficedula speculigera
Dendrocopos minor
Dendrocopos major
Emberiza cia
Saxicola rubetra
Sylvia undata
Garrulus glandarius
Leucocytozoon
Columba palumbus
Picus viridis
Phylloscopus nitidus
Iduna opaca
Riparia riparia
Chloris chloris
Emberiza cirlus
Drovetski, Sergei V.
Aghayan, Sargis A.
Mata, Vanessa A.
Lopes, Ricardo J.
Mode, Nicolle A.
Harvey, Johanna A.
Voelker, Gary
Data from: Does the niche-breadth or trade-off hypothesis explain the abundance-occupancy relationship in avian haemosporidia?
topic_facet Anthus spinoletta
Ficedula parva
host specialization
Luscinia luscinia
Periparus ater
Acrocephalus palustris
Alectoris Chukar
Cettia cetti
Sturnus unicolor
Lanius meridionalis
Anthus trivialis
Passer hispaniolensis
Phylloscopus sindianus
Streptopelia turtur
Strix aluco
Upupa epops
Emberiza hortulana
Emberiza melanocephala
Sylvia crassirostris
Saxicola maurus
Passer domesticus
Poecile lugubris
Sylvia borin
Carduelis cannabina
Picus vaillantii
Sylvia curruca
blood parasites
Sylvia deserticola
Hippolais polyglotta
Holocene
Galerida cristata
Certhia brachydactyla
Certhia familiaris
Phoenicurus moussieri
Otus scops
Host Parasite Interactions
Cyanistes caeruleus
Ficedula semitorquata
Motacilla cinerea
Sitta krueperi
Cyanopica cooki
Cyanistes teneriffae
Emberiza calandra
Lanius senator
Serinus serinus
Athene noctua
Lanius collurio
Sylvia hortensis
Sylvia communis
Corvus corone
Hirundo rustica
Eremophila alpestris
Erithacus rubecula
Irania gutturalis
Pyrrhula pyrrhula
Motacilla flava
Prunella ocularis
Turdus viscivorus
Luscinia megarhynchos
Oenanthe deserti
Sylvia atricapilla
Muscicapa striata
Plasmodium
Sylvia cantillans
Oenanthe leucura
Haemosporidia
Turdus philomelos
Phoenicurus phoenicurus
Sitta europaea
Aegithalos caudatus
Troglodytes troglodytes
Petronia petronia
Turdus merula
abundance-occupancy relationship
Rhodopechys sanguineus
Carduelis flavirostris
Falco naumanni
Fringilla coelebs
Phylloscopus sibilatrix
Phoenicurus ochruros
Oenanthe oenanthe
Lophophanes cristatus
Pycnonotus barbatus
Carduelis carduelis
Carpodacus erythrinus
Phylloscopus collybita
Sylvia melanocephala
Monticola saxatilis
Coccothraustes coccothraustes
Cercotrichas galactotes
Prunella modularis
Sylvia nisoria
Falco tinnunculus
Parus major
Haemoproteus
Alectoris rufa
Hippolais languida
Ficedula speculigera
Dendrocopos minor
Dendrocopos major
Emberiza cia
Saxicola rubetra
Sylvia undata
Garrulus glandarius
Leucocytozoon
Columba palumbus
Picus viridis
Phylloscopus nitidus
Iduna opaca
Riparia riparia
Chloris chloris
Emberiza cirlus
description Two hypotheses have been proposed to explain the abundance-occupancy relationship (AOR) in parasites. The niche-breadth hypothesis suggests that host generalists are more abundant and efficient at colonizing different host communities than specialists. The trade-off hypothesis argues that host specialists achieve high density across their hosts’ ranges, whereas generalists incur the high cost of adaptation to diverse immuno-defense systems. We tested these hypotheses using 386 haemosporidian cytochrome-b lineages (1894 sequences) recovered from 2318 birds of 103 species sampled in NW Africa, NW Iberia, W Greater Caucasus, and Transcaucasia. The number of regions occupied by lineages was associated with their frequency suggesting the presence of AOR in avian Haemosporidia. However, neither hypothesis provided a better explanation for the AOR. Although, the host-generalist Plasmodium SGS1 was over 3 times more abundant than other widespread lineages, both host specialists and generalists were successful in colonizing all study regions and achieved overall high prevalence. : Tested birdsBirds were sampled in the wild in four biogeographic regions (Region): NWA - Northwest Africa, NWI - Northwest Iberia, TRC - Transcaucasia, WGC - Western Greater Caucasus. Bird ID is the unique identifier for each bird sampled. Repeated bird IDs indicate multiple infections in the same bird. Date is when the sample was taken in the field. Parasite lineage is a unique identifier and 'none' indicates that no haemosporidian parasite lineages were found. Please see the original article for details of methods.Haemosporidian lineages FASTAThe data file is a FASTA alignment of unique haemosporidian lineages identified in the bird samples. The name of each lineage corresponds to the parasite lineage identifier used in the manuscript and associated files. Lineages are identified to genus when species identification was not possible.
format Dataset
author Drovetski, Sergei V.
Aghayan, Sargis A.
Mata, Vanessa A.
Lopes, Ricardo J.
Mode, Nicolle A.
Harvey, Johanna A.
Voelker, Gary
author_facet Drovetski, Sergei V.
Aghayan, Sargis A.
Mata, Vanessa A.
Lopes, Ricardo J.
Mode, Nicolle A.
Harvey, Johanna A.
Voelker, Gary
author_sort Drovetski, Sergei V.
title Data from: Does the niche-breadth or trade-off hypothesis explain the abundance-occupancy relationship in avian haemosporidia?
title_short Data from: Does the niche-breadth or trade-off hypothesis explain the abundance-occupancy relationship in avian haemosporidia?
title_full Data from: Does the niche-breadth or trade-off hypothesis explain the abundance-occupancy relationship in avian haemosporidia?
title_fullStr Data from: Does the niche-breadth or trade-off hypothesis explain the abundance-occupancy relationship in avian haemosporidia?
title_full_unstemmed Data from: Does the niche-breadth or trade-off hypothesis explain the abundance-occupancy relationship in avian haemosporidia?
title_sort data from: does the niche-breadth or trade-off hypothesis explain the abundance-occupancy relationship in avian haemosporidia?
publisher Dryad
publishDate 2014
url https://dx.doi.org/10.5061/dryad.r8bj6
http://datadryad.org/stash/dataset/doi:10.5061/dryad.r8bj6
long_lat ENVELOPE(118.100,118.100,63.700,63.700)
ENVELOPE(3.950,3.950,-71.983,-71.983)
geographic Chukar
Parus
geographic_facet Chukar
Parus
genre Eremophila alpestris
genre_facet Eremophila alpestris
op_relation https://dx.doi.org/10.1111/mec.12744
op_rights Creative Commons Zero v1.0 Universal
https://creativecommons.org/publicdomain/zero/1.0/legalcode
cc0-1.0
op_rightsnorm CC0
op_doi https://doi.org/10.5061/dryad.r8bj6
https://doi.org/10.1111/mec.12744
_version_ 1766402275992928256
spelling ftdatacite:10.5061/dryad.r8bj6 2023-05-15T16:06:23+02:00 Data from: Does the niche-breadth or trade-off hypothesis explain the abundance-occupancy relationship in avian haemosporidia? Drovetski, Sergei V. Aghayan, Sargis A. Mata, Vanessa A. Lopes, Ricardo J. Mode, Nicolle A. Harvey, Johanna A. Voelker, Gary 2014 https://dx.doi.org/10.5061/dryad.r8bj6 http://datadryad.org/stash/dataset/doi:10.5061/dryad.r8bj6 en eng Dryad https://dx.doi.org/10.1111/mec.12744 Creative Commons Zero v1.0 Universal https://creativecommons.org/publicdomain/zero/1.0/legalcode cc0-1.0 CC0 Anthus spinoletta Ficedula parva host specialization Luscinia luscinia Periparus ater Acrocephalus palustris Alectoris Chukar Cettia cetti Sturnus unicolor Lanius meridionalis Anthus trivialis Passer hispaniolensis Phylloscopus sindianus Streptopelia turtur Strix aluco Upupa epops Emberiza hortulana Emberiza melanocephala Sylvia crassirostris Saxicola maurus Passer domesticus Poecile lugubris Sylvia borin Carduelis cannabina Picus vaillantii Sylvia curruca blood parasites Sylvia deserticola Hippolais polyglotta Holocene Galerida cristata Certhia brachydactyla Certhia familiaris Phoenicurus moussieri Otus scops Host Parasite Interactions Cyanistes caeruleus Ficedula semitorquata Motacilla cinerea Sitta krueperi Cyanopica cooki Cyanistes teneriffae Emberiza calandra Lanius senator Serinus serinus Athene noctua Lanius collurio Sylvia hortensis Sylvia communis Corvus corone Hirundo rustica Eremophila alpestris Erithacus rubecula Irania gutturalis Pyrrhula pyrrhula Motacilla flava Prunella ocularis Turdus viscivorus Luscinia megarhynchos Oenanthe deserti Sylvia atricapilla Muscicapa striata Plasmodium Sylvia cantillans Oenanthe leucura Haemosporidia Turdus philomelos Phoenicurus phoenicurus Sitta europaea Aegithalos caudatus Troglodytes troglodytes Petronia petronia Turdus merula abundance-occupancy relationship Rhodopechys sanguineus Carduelis flavirostris Falco naumanni Fringilla coelebs Phylloscopus sibilatrix Phoenicurus ochruros Oenanthe oenanthe Lophophanes cristatus Pycnonotus barbatus Carduelis carduelis Carpodacus erythrinus Phylloscopus collybita Sylvia melanocephala Monticola saxatilis Coccothraustes coccothraustes Cercotrichas galactotes Prunella modularis Sylvia nisoria Falco tinnunculus Parus major Haemoproteus Alectoris rufa Hippolais languida Ficedula speculigera Dendrocopos minor Dendrocopos major Emberiza cia Saxicola rubetra Sylvia undata Garrulus glandarius Leucocytozoon Columba palumbus Picus viridis Phylloscopus nitidus Iduna opaca Riparia riparia Chloris chloris Emberiza cirlus dataset Dataset 2014 ftdatacite https://doi.org/10.5061/dryad.r8bj6 https://doi.org/10.1111/mec.12744 2022-02-08T12:42:49Z Two hypotheses have been proposed to explain the abundance-occupancy relationship (AOR) in parasites. The niche-breadth hypothesis suggests that host generalists are more abundant and efficient at colonizing different host communities than specialists. The trade-off hypothesis argues that host specialists achieve high density across their hosts’ ranges, whereas generalists incur the high cost of adaptation to diverse immuno-defense systems. We tested these hypotheses using 386 haemosporidian cytochrome-b lineages (1894 sequences) recovered from 2318 birds of 103 species sampled in NW Africa, NW Iberia, W Greater Caucasus, and Transcaucasia. The number of regions occupied by lineages was associated with their frequency suggesting the presence of AOR in avian Haemosporidia. However, neither hypothesis provided a better explanation for the AOR. Although, the host-generalist Plasmodium SGS1 was over 3 times more abundant than other widespread lineages, both host specialists and generalists were successful in colonizing all study regions and achieved overall high prevalence. : Tested birdsBirds were sampled in the wild in four biogeographic regions (Region): NWA - Northwest Africa, NWI - Northwest Iberia, TRC - Transcaucasia, WGC - Western Greater Caucasus. Bird ID is the unique identifier for each bird sampled. Repeated bird IDs indicate multiple infections in the same bird. Date is when the sample was taken in the field. Parasite lineage is a unique identifier and 'none' indicates that no haemosporidian parasite lineages were found. Please see the original article for details of methods.Haemosporidian lineages FASTAThe data file is a FASTA alignment of unique haemosporidian lineages identified in the bird samples. The name of each lineage corresponds to the parasite lineage identifier used in the manuscript and associated files. Lineages are identified to genus when species identification was not possible. Dataset Eremophila alpestris DataCite Metadata Store (German National Library of Science and Technology) Chukar ENVELOPE(118.100,118.100,63.700,63.700) Parus ENVELOPE(3.950,3.950,-71.983,-71.983)