Multiple-batch spawning as a bet-hedging strategy in highly stochastic environments: an exploratory analysis of Atlantic cod ...
Stochastic environments shape life-history traits and can promote selection for risk-spreading strategies, such as bet-hedging. Although the strategy has often been hypothesised to exist for various species, empirical tests providing firm evidence have been rare, mainly due to the challenge in track...
Main Authors: | , , |
---|---|
Format: | Dataset |
Language: | English |
Published: |
Dryad
2020
|
Subjects: | |
Online Access: | https://dx.doi.org/10.5061/dryad.g1jwstqn0 https://datadryad.org/dataset/doi:10.5061/dryad.g1jwstqn0 |
Summary: | Stochastic environments shape life-history traits and can promote selection for risk-spreading strategies, such as bet-hedging. Although the strategy has often been hypothesised to exist for various species, empirical tests providing firm evidence have been rare, mainly due to the challenge in tracking fitness across generations. Here, we take a ‘proof of principle’ approach to explore whether the reproductive strategy of multiple-batch spawning constitutes a bet-hedging. We used Atlantic cod (Gadus morhua) as the study species and parameterised an eco-evolutionary model, using empirical data on size-related reproductive and survival traits. To evaluate the fitness benefits of multiple-batch spawning (within a single breeding period), the mechanistic model separately simulated multiple-batch and single-batch spawning populations under temporally varying environments. We followed the arithmetic and geometric mean fitness associated with both strategies and quantified the mean changes in fitness under several ... : Data for this study was simulated with the eco-evolutionary model parameterised for Atlantic cod (.R code is provided). The process is described in the method sections. ... |
---|