Data for: Harvest and decimation affect genetic drift and the effective population size in wild reindeer ...

Harvesting and culling are methods used to monitor and manage wildlife diseases. An important consequence of these practices is a change in the genetic dynamics of affected populations that may threaten their long-term viability. The effective population size (Ne) is a fundamental parameter for desc...

Full description

Bibliographic Details
Main Authors: Kvalnes, Thomas, Flagstad, Øystein, Våge, Jørn, Strand, Olav, Viljugrein, Hildegunn, Sæther, Bernt-Erik
Format: Dataset
Language:English
Published: Dryad 2024
Subjects:
Online Access:https://dx.doi.org/10.5061/dryad.brv15dvh6
https://datadryad.org/stash/dataset/doi:10.5061/dryad.brv15dvh6
Description
Summary:Harvesting and culling are methods used to monitor and manage wildlife diseases. An important consequence of these practices is a change in the genetic dynamics of affected populations that may threaten their long-term viability. The effective population size (Ne) is a fundamental parameter for describing such changes as it determines the amount of genetic drift in a population. Here, we estimate Ne of a harvested wild reindeer population in Norway. Then we use simulations to investigate the genetic consequences of management efforts for handling a recent spread of chronic wasting disease, including increased adult male harvest and population decimation. The Ne/N ratio in this population was found to be 0.124 at the end of the study period, compared to 0.239 in the preceding 14-year period. The difference was caused by increased harvest rates with a high proportion of adult males (older than 2.5 years) being shot (15.2 % in 2005-2018 and 44.8 % in 2021). Increased harvest rates decreased Ne in the ... : Data collectionThe data was collected from the wild reindeer population at Hardangervidda in Southern Norway (60°09’55’’ N, 07°27’58’’ E). The Hardangervidda population is subject to annual harvest before the rut in late summer or the beginning of autumn (August-September). Generally, hunters do not differentiate between female and male calves, and it is also difficult to determine the sex of yearlings (1.5 years old) during hunting. Thus, harvest quotas generally separate between calves (0.5 years old), females (2.5 years and older), yearlings (females and males 1.5 years old), and free licenses (animals of any age and sex). The latter category is typically used to shoot adult males (2.5 years and older), as their size and status as trophy is considered attractive by hunters. Data on the number of harvested animals in each of the six categories (calves, yearlings, and adults of both sexes) were collected as reported by hunters. Four different annual surveys are performed throughout the year to monitor the ...