Data from: Degradation of internal organic matter is the main control on pteropod shell dissolution after death ...
The potential for preservation of thecosome pteropods is thought to be largely governed by the chemical stability of their delicate aragonitic shells in seawater. However, sediment trap studies have found that significant carbonate dissolution can occur above the carbonate saturation horizon. Here w...
Main Authors: | , , , |
---|---|
Format: | Dataset |
Language: | English |
Published: |
Dryad
2019
|
Subjects: | |
Online Access: | https://dx.doi.org/10.5061/dryad.8ts30t5 https://datadryad.org/stash/dataset/doi:10.5061/dryad.8ts30t5 |
id |
ftdatacite:10.5061/dryad.8ts30t5 |
---|---|
record_format |
openpolar |
spelling |
ftdatacite:10.5061/dryad.8ts30t5 2024-10-29T17:41:02+00:00 Data from: Degradation of internal organic matter is the main control on pteropod shell dissolution after death ... Oakes, Rosie L. Peck, Victoria L. Manno, Clara Bralower, Timothy J. 2019 https://dx.doi.org/10.5061/dryad.8ts30t5 https://datadryad.org/stash/dataset/doi:10.5061/dryad.8ts30t5 en eng Dryad https://dx.doi.org/10.1029/2019gb006223 Creative Commons Zero v1.0 Universal https://creativecommons.org/publicdomain/zero/1.0/legalcode cc0-1.0 Limacina helicina antarctica Modern decay pteropod Holocene Dataset dataset 2019 ftdatacite https://doi.org/10.5061/dryad.8ts30t510.1029/2019gb006223 2024-10-01T11:13:55Z The potential for preservation of thecosome pteropods is thought to be largely governed by the chemical stability of their delicate aragonitic shells in seawater. However, sediment trap studies have found that significant carbonate dissolution can occur above the carbonate saturation horizon. Here we present the results from experiments conducted on two cruises to the Scotia Sea to directly test whether the breakdown of the organic pteropod body influences shell dissolution. We find that, on the timescales of three to thirteen days, the oxidation of organic matter within the shells of dead pteropods is a stronger driver of shell dissolution than the saturation state of seawater. Three to four days after death, shells became milky white and nano‐SEM images reveal smoothing of internal surface features and increased shell porosity, both indicative of aragonite dissolution. These findings have implications for the interpretation of the condition of pteropod shells from sediment traps and the fossil record, as ... : Ambient seawater (omega 1.40) - liveFile contains 5 folders with the reconstructed CT data (*.DICOM format) and scan set-up information (*.pca format) for the 5 live specimens of L.helicina antarctica incubated for 13 days in ambient seawater (omega aragonite = 1.40)1) Ambient seawater (omega 1.40) - live.zipAmbient seawater (omega 1.40) - decayFile contains 5 folders with the reconstructed CT data (*.DICOM format) and scan set-up information (*.pca format) for the 5 decaying specimens of L.helicina antarctica incubated for 13 days in ambient seawater (omega aragonite = 1.40)2) Ambient seawater (omega 1.40) - decay.zipSlightly undersaturated seawater (omega 0.89) - decayFile contains 5 folders with the reconstructed CT data (*.DICOM format) and scan set-up information (*.pca format) for the 5 decaying specimens of L.helicina antarctica incubated for 13 days in seawater adjusted to an aragonite saturation of 0.893) Slightly undersaturated seawater (omega 0.89) - decay.zipHighly undersaturated seawater (omega ... Dataset Antarc* Limacina helicina Scotia Sea DataCite Scotia Sea |
institution |
Open Polar |
collection |
DataCite |
op_collection_id |
ftdatacite |
language |
English |
topic |
Limacina helicina antarctica Modern decay pteropod Holocene |
spellingShingle |
Limacina helicina antarctica Modern decay pteropod Holocene Oakes, Rosie L. Peck, Victoria L. Manno, Clara Bralower, Timothy J. Data from: Degradation of internal organic matter is the main control on pteropod shell dissolution after death ... |
topic_facet |
Limacina helicina antarctica Modern decay pteropod Holocene |
description |
The potential for preservation of thecosome pteropods is thought to be largely governed by the chemical stability of their delicate aragonitic shells in seawater. However, sediment trap studies have found that significant carbonate dissolution can occur above the carbonate saturation horizon. Here we present the results from experiments conducted on two cruises to the Scotia Sea to directly test whether the breakdown of the organic pteropod body influences shell dissolution. We find that, on the timescales of three to thirteen days, the oxidation of organic matter within the shells of dead pteropods is a stronger driver of shell dissolution than the saturation state of seawater. Three to four days after death, shells became milky white and nano‐SEM images reveal smoothing of internal surface features and increased shell porosity, both indicative of aragonite dissolution. These findings have implications for the interpretation of the condition of pteropod shells from sediment traps and the fossil record, as ... : Ambient seawater (omega 1.40) - liveFile contains 5 folders with the reconstructed CT data (*.DICOM format) and scan set-up information (*.pca format) for the 5 live specimens of L.helicina antarctica incubated for 13 days in ambient seawater (omega aragonite = 1.40)1) Ambient seawater (omega 1.40) - live.zipAmbient seawater (omega 1.40) - decayFile contains 5 folders with the reconstructed CT data (*.DICOM format) and scan set-up information (*.pca format) for the 5 decaying specimens of L.helicina antarctica incubated for 13 days in ambient seawater (omega aragonite = 1.40)2) Ambient seawater (omega 1.40) - decay.zipSlightly undersaturated seawater (omega 0.89) - decayFile contains 5 folders with the reconstructed CT data (*.DICOM format) and scan set-up information (*.pca format) for the 5 decaying specimens of L.helicina antarctica incubated for 13 days in seawater adjusted to an aragonite saturation of 0.893) Slightly undersaturated seawater (omega 0.89) - decay.zipHighly undersaturated seawater (omega ... |
format |
Dataset |
author |
Oakes, Rosie L. Peck, Victoria L. Manno, Clara Bralower, Timothy J. |
author_facet |
Oakes, Rosie L. Peck, Victoria L. Manno, Clara Bralower, Timothy J. |
author_sort |
Oakes, Rosie L. |
title |
Data from: Degradation of internal organic matter is the main control on pteropod shell dissolution after death ... |
title_short |
Data from: Degradation of internal organic matter is the main control on pteropod shell dissolution after death ... |
title_full |
Data from: Degradation of internal organic matter is the main control on pteropod shell dissolution after death ... |
title_fullStr |
Data from: Degradation of internal organic matter is the main control on pteropod shell dissolution after death ... |
title_full_unstemmed |
Data from: Degradation of internal organic matter is the main control on pteropod shell dissolution after death ... |
title_sort |
data from: degradation of internal organic matter is the main control on pteropod shell dissolution after death ... |
publisher |
Dryad |
publishDate |
2019 |
url |
https://dx.doi.org/10.5061/dryad.8ts30t5 https://datadryad.org/stash/dataset/doi:10.5061/dryad.8ts30t5 |
geographic |
Scotia Sea |
geographic_facet |
Scotia Sea |
genre |
Antarc* Limacina helicina Scotia Sea |
genre_facet |
Antarc* Limacina helicina Scotia Sea |
op_relation |
https://dx.doi.org/10.1029/2019gb006223 |
op_rights |
Creative Commons Zero v1.0 Universal https://creativecommons.org/publicdomain/zero/1.0/legalcode cc0-1.0 |
op_doi |
https://doi.org/10.5061/dryad.8ts30t510.1029/2019gb006223 |
_version_ |
1814277136412835840 |