Acoustic features as a tool to visualize and explore marine soundscapes: Applications illustrated using marine mammal Passive Acoustic Monitoring datasets ...
Passive Acoustic Monitoring (PAM) is emerging as a solution for monitoring species and environmental change over large spatial and temporal scales. However, drawing rigorous conclusions based on acoustic recordings is challenging, as there is no consensus over which approaches, and indices are best...
Main Authors: | , , , |
---|---|
Format: | Dataset |
Language: | English |
Published: |
Dryad
2023
|
Subjects: | |
Online Access: | https://dx.doi.org/10.5061/dryad.3bk3j9kn8 https://datadryad.org/stash/dataset/doi:10.5061/dryad.3bk3j9kn8 |
Summary: | Passive Acoustic Monitoring (PAM) is emerging as a solution for monitoring species and environmental change over large spatial and temporal scales. However, drawing rigorous conclusions based on acoustic recordings is challenging, as there is no consensus over which approaches, and indices are best suited for characterizing marine and terrestrial acoustic environments. Here, we describe the application of multiple machine-learning techniques to the analysis of a large PAM dataset. We combine pre-trained acoustic classification models (VGGish, NOAA & Google Humpback Whale Detector), dimensionality reduction (UMAP), and balanced random forest algorithms to demonstrate how machine-learned acoustic features capture different aspects of the marine environment. The UMAP dimensions derived from VGGish acoustic features exhibited good performance in separating marine mammal vocalizations according to species and locations. RF models trained on the acoustic features performed well for labelled sounds in the 8 kHz ... : Data acquisition and preparation We collected all records available in the Watkins Marine Mammal Database website listed under the “all cuts'' page. For each audio file in the WMD the associated metadata included a label for the sound sources present in the recording (biological, anthropogenic, and environmental), as well as information related to the location and date of recording. To minimize the presence of unwanted sounds in the samples, we only retained audio files with a single source listed in the metadata. We then labelled the selected audio clips according to taxonomic group (Odontocetae, Mysticetae), and species. We limited the analysis to 12 marine mammal species by discarding data when a species: had less than 60 s of audio available, had a vocal repertoire extending beyond the resolution of the acoustic classification model (VGGish), or was recorded in a single country. To determine if a species was suited for analysis using VGGish, we inspected the Mel-spectrograms of 3-s audio samples and only ... |
---|