Experimentally increased snow depth affects High Arctic microarthropods inconsistently over two consecutive winters ...

Climate change induced alterations to winter conditions may affect decomposer organisms controlling the vast carbon stores in northern soils. Soil microarthropods are abundant decomposers in Arctic ecosystems affecting soil carbon release through their activities. We studied whether increased snow d...

Full description

Bibliographic Details
Main Authors: Krab, Eveline, Lundin, Erik, Coulson, Stephen, Dorrepaal, Ellen, Cooper, Elisabeth
Format: Dataset
Language:English
Published: Dryad 2022
Subjects:
Online Access:https://dx.doi.org/10.5061/dryad.1zcrjdfv6
https://datadryad.org/stash/dataset/doi:10.5061/dryad.1zcrjdfv6
Description
Summary:Climate change induced alterations to winter conditions may affect decomposer organisms controlling the vast carbon stores in northern soils. Soil microarthropods are abundant decomposers in Arctic ecosystems affecting soil carbon release through their activities. We studied whether increased snow depth affected microarthropods, and if effects were consistent over two consecutive winters. We sampled Collembola and soil mites from a snow accumulation experiment at Svalbard in early summer and used soil microclimatic data to explore to which aspects of winter climate change microarthropods are most sensitive. Community densities differed substantially between years and increased snow depth in winter had inconsistent effects. Increased snow depth hardly affected microarthropods in 2015, but decreased overall abundance and altered relative abundances of microarthropod groups and Collembola species after a milder winter in 2016. Although our increased snow depth treatment enhanced soil temperatures by 3.2 ⁰C in ... : The published dataset encompasses: Soil invertebrate community (density, ind. m-2) in 'Snoeco_microarhropods_Dryad.csv' Microarthropods were identified to ‘group level’, ‘Collembola’, ‘Oribatid mites’, ‘Predatory mites’ (Prostigmata and Mesostigmata) and ‘Mite juveniles/other’ (nymphal Oribatids and Mesostigmata and nymphal Prostigmata) and counted. Collembola were identified to species or genus level. Microarthropods were sampled as described: Three cores were taken (ø 4.5 cm, 5-9 cm deep) from each fence/ambient plot from Salix polaris-dominated patches. In increased snow depth plots, approximately 10 m west of the snow fence, in the early summer of 2015 (15th of July) and 2016 (6th of July). Cores were taken so that the samples always contained the complete organic layer (on average approx. 5 cm thick (Semenchuk et al. 2019) in which most microarthropods can be found, as well as a part of the mineral soil (>1 cm), in which microarthropod densities are generally low or absent 63. In 2015, these cores ...