Quantifying uncertainties of permafrost carbon-climate feedbacks ...

The land surface models JULES (Joint UK Land Environment Simulator, two versions) and ORCHIDEE-MICT (Organizing Carbon and Hydrology in Dynamic Ecosystems), each with a revised representation of permafrost carbon, were coupled to the Integrated Model Of Global Effects of climatic aNomalies (IMOGEN)...

Full description

Bibliographic Details
Main Authors: Burke, Eleanor J., Ekici, Altug, Huang, Ye, Chadburn, Sarah E., Huntingford, Chris, Ciais, Philippe, Friedlingstein, Pierre, Peng, Shushi, Krinner, Gerhard
Format: Text
Language:unknown
Published: European Geosciences Union 2017
Subjects:
Online Access:https://dx.doi.org/10.48350/158628
https://boris.unibe.ch/158628/
Description
Summary:The land surface models JULES (Joint UK Land Environment Simulator, two versions) and ORCHIDEE-MICT (Organizing Carbon and Hydrology in Dynamic Ecosystems), each with a revised representation of permafrost carbon, were coupled to the Integrated Model Of Global Effects of climatic aNomalies (IMOGEN) intermediate-complexity climate and ocean carbon uptake model. IMOGEN calculates atmospheric carbon dioxide (CO2) and local monthly surface climate for a given emission scenario with the land–atmosphere CO2 flux exchange from either JULES or ORCHIDEE-MICT. These simulations include feedbacks associated with permafrost carbon changes in a warming world. Both IMOGEN–JULES and IMOGEN–ORCHIDEE-MICT were forced by historical and three alternative future-CO2-emission scenarios. Those simulations were performed for different climate sensitivities and regional climate change patterns based on 22 different Earth system models (ESMs) used for CMIP3 (phase 3 of the Coupled Model Intercomparison Project), allowing us to ...