Atmospheric freshwater fluxes and their effect on the global thermohaline circulation

Atmospheric water vapor fluxes were derived from a 1‐year data set of horizontal wind speed and specific humidity assimilated from meteorological observations by the European Center for Medium‐Range Weather Forecast (ECMWF). Vertically integrated horizontal freshwater fluxes were compared to those o...

Full description

Bibliographic Details
Main Authors: Zaucker, Fritz, Stocker, Thomas F., Broecker, Wallace S.
Format: Text
Language:unknown
Published: American Geophysical Union 1994
Subjects:
Online Access:https://dx.doi.org/10.48350/156089
https://boris.unibe.ch/156089/
id ftdatacite:10.48350/156089
record_format openpolar
spelling ftdatacite:10.48350/156089 2023-05-15T13:52:47+02:00 Atmospheric freshwater fluxes and their effect on the global thermohaline circulation Zaucker, Fritz Stocker, Thomas F. Broecker, Wallace S. 1994 https://dx.doi.org/10.48350/156089 https://boris.unibe.ch/156089/ unknown American Geophysical Union restricted access publisher holds copyright http://purl.org/coar/access_right/c_16ec 530 Physics Text article-journal journal article ScholarlyArticle 1994 ftdatacite https://doi.org/10.48350/156089 2021-11-05T12:55:41Z Atmospheric water vapor fluxes were derived from a 1‐year data set of horizontal wind speed and specific humidity assimilated from meteorological observations by the European Center for Medium‐Range Weather Forecast (ECMWF). Vertically integrated horizontal freshwater fluxes were compared to those of two data sets based on a climatology [Oort, 1983] and on simulations with an atmospheric general circulation model (AGCM). Zonal transports agree fairly well at all latitudes outside the tropics, where fluxes are about double for the AGCM data set. Meridional fluxes of the AGCM and ECMWF data sets show close agreement, while the climatological fluxes are generally smaller with a considerable northward shift in the southern hemisphere. Atmosphere‐to‐ocean freshwater fluxes were derived from the three data sets. Not only is there substantial disagreement between the data sets, but their zonal averages over the Atlantic, Pacific, and Indian Ocean basins show little resemblance to the respective restoring freshwater fluxes from a 2‐dimensional ocean model. If the ocean model is forced with the observed and modeled atmospheric fluxes, we find that the mode of ocean circulation is determined mostly by the net flux to the high‐latitude oceans and the amount of freshwater exported from the Atlantic basin. The latitudinal structure of the freshwater fluxes in low‐latitudes and midlatitudes has little influence on the modeled thermohaline circulation. The fluxes derived from the climatology and ECMWF permit North Atlantic Deep Water (NADW) formation, but a strong freshwater input to the Southern Ocean inhibits Antarctic Bottom Water formation. The AGCM transports so much moisture to the Arctic Ocean that NADW formation is shut down, resulting in a ocean circulation mode of southern sinking in all three ocean basins. If NADW is formed in the model, the strength of the Atlantic meridional overturning is determined by the net freshwater export from the Atlantic basin. When this export is artificially increased in the model over a range from 0.2 to 1 Sv, the ratio of overturning to freshwater forcing decreases almost linearly. Text Antarc* Antarctic Arctic Arctic Ocean NADW North Atlantic Deep Water North Atlantic Southern Ocean DataCite Metadata Store (German National Library of Science and Technology) Arctic Antarctic Southern Ocean Arctic Ocean Pacific Indian
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language unknown
topic 530 Physics
spellingShingle 530 Physics
Zaucker, Fritz
Stocker, Thomas F.
Broecker, Wallace S.
Atmospheric freshwater fluxes and their effect on the global thermohaline circulation
topic_facet 530 Physics
description Atmospheric water vapor fluxes were derived from a 1‐year data set of horizontal wind speed and specific humidity assimilated from meteorological observations by the European Center for Medium‐Range Weather Forecast (ECMWF). Vertically integrated horizontal freshwater fluxes were compared to those of two data sets based on a climatology [Oort, 1983] and on simulations with an atmospheric general circulation model (AGCM). Zonal transports agree fairly well at all latitudes outside the tropics, where fluxes are about double for the AGCM data set. Meridional fluxes of the AGCM and ECMWF data sets show close agreement, while the climatological fluxes are generally smaller with a considerable northward shift in the southern hemisphere. Atmosphere‐to‐ocean freshwater fluxes were derived from the three data sets. Not only is there substantial disagreement between the data sets, but their zonal averages over the Atlantic, Pacific, and Indian Ocean basins show little resemblance to the respective restoring freshwater fluxes from a 2‐dimensional ocean model. If the ocean model is forced with the observed and modeled atmospheric fluxes, we find that the mode of ocean circulation is determined mostly by the net flux to the high‐latitude oceans and the amount of freshwater exported from the Atlantic basin. The latitudinal structure of the freshwater fluxes in low‐latitudes and midlatitudes has little influence on the modeled thermohaline circulation. The fluxes derived from the climatology and ECMWF permit North Atlantic Deep Water (NADW) formation, but a strong freshwater input to the Southern Ocean inhibits Antarctic Bottom Water formation. The AGCM transports so much moisture to the Arctic Ocean that NADW formation is shut down, resulting in a ocean circulation mode of southern sinking in all three ocean basins. If NADW is formed in the model, the strength of the Atlantic meridional overturning is determined by the net freshwater export from the Atlantic basin. When this export is artificially increased in the model over a range from 0.2 to 1 Sv, the ratio of overturning to freshwater forcing decreases almost linearly.
format Text
author Zaucker, Fritz
Stocker, Thomas F.
Broecker, Wallace S.
author_facet Zaucker, Fritz
Stocker, Thomas F.
Broecker, Wallace S.
author_sort Zaucker, Fritz
title Atmospheric freshwater fluxes and their effect on the global thermohaline circulation
title_short Atmospheric freshwater fluxes and their effect on the global thermohaline circulation
title_full Atmospheric freshwater fluxes and their effect on the global thermohaline circulation
title_fullStr Atmospheric freshwater fluxes and their effect on the global thermohaline circulation
title_full_unstemmed Atmospheric freshwater fluxes and their effect on the global thermohaline circulation
title_sort atmospheric freshwater fluxes and their effect on the global thermohaline circulation
publisher American Geophysical Union
publishDate 1994
url https://dx.doi.org/10.48350/156089
https://boris.unibe.ch/156089/
geographic Arctic
Antarctic
Southern Ocean
Arctic Ocean
Pacific
Indian
geographic_facet Arctic
Antarctic
Southern Ocean
Arctic Ocean
Pacific
Indian
genre Antarc*
Antarctic
Arctic
Arctic Ocean
NADW
North Atlantic Deep Water
North Atlantic
Southern Ocean
genre_facet Antarc*
Antarctic
Arctic
Arctic Ocean
NADW
North Atlantic Deep Water
North Atlantic
Southern Ocean
op_rights restricted access
publisher holds copyright
http://purl.org/coar/access_right/c_16ec
op_doi https://doi.org/10.48350/156089
_version_ 1766257469530570752