Uncertainty growth and forecast reliability during extratropical cyclogenesis ...
In global numerical weather prediction, the strongest contribution to ensemble variance growth over the first few days is at synoptic scales. Hence it is particularly important to ensure that this synoptic-scale variance is reliable. Here we focus on wintertime synoptic-scale growth in the North Atl...
Main Authors: | , |
---|---|
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
ETH Zurich
2023
|
Subjects: | |
Online Access: | https://dx.doi.org/10.3929/ethz-b-000631069 http://hdl.handle.net/20.500.11850/631069 |
Summary: | In global numerical weather prediction, the strongest contribution to ensemble variance growth over the first few days is at synoptic scales. Hence it is particularly important to ensure that this synoptic-scale variance is reliable. Here we focus on wintertime synoptic-scale growth in the North Atlantic storm track. In the 12 h background forecasts of the Ensemble of Data Assimilations (EDA) from the European Centre for Medium-Range Weather Forecasts (ECMWF), we find that initial variance growth at synoptic scales tends to be organized in particular flow situations, such as during the deepening of cyclones (cyclogenesis). Both baroclinic and diabatic aspects may be involved in the overall growth rate. However, evaluation of reliability through use of an extended error-spread equation indicates that the ECMWF ensemble forecast, which is initialized from the EDA but with additional singular vector perturbations, appears to have too much variance at a lead time of 2 d and that this over-spread is associated ... : Weather and Climate Dynamics, 4 (3) ... |
---|