Evidence for preservation of organic carbon interacting with iron in material displaced from retrogressive thaw slumps: Case study in Peel Plateau, western Canadian Arctic ...

In northern high latitudes, rapid warming is set to amplify carbon-climate feedbacks by enhancing permafrost thaw and biogeochemical transformation of large amounts of soil organic carbon. However, between 30 % and 80 % of permafrost soil organic carbon is considered to be stabilized by geochemical...

Full description

Bibliographic Details
Main Authors: Thomas, Maxime, Monhonval, Arthur, Hirst, Catherine, Bröder, Lisa, Zolkos, Scott, Vonk, Jorien E., Tank, Suzanne E., Keskitalo, Kirsi H., Shakil, Sarah, Kokelj, Steven V., van der Sluijs, Jurjen, Opfergelt, Sophie
Format: Text
Language:English
Published: ETH Zurich 2023
Subjects:
Ice
Online Access:https://dx.doi.org/10.3929/ethz-b-000608066
http://hdl.handle.net/20.500.11850/608066
Description
Summary:In northern high latitudes, rapid warming is set to amplify carbon-climate feedbacks by enhancing permafrost thaw and biogeochemical transformation of large amounts of soil organic carbon. However, between 30 % and 80 % of permafrost soil organic carbon is considered to be stabilized by geochemical interactions with the soil mineral pool and thus less susceptible to be emitted as greenhouse gases. Quantification of the nature of and controls on mineral-organic carbon interactions is needed to better constrain permafrost-carbon-climate feedbacks, particularly in ice-rich environments resulting in rapid thaw and development of thermokarst landforms. On sloping terrain, mass wasting features called retrogressive thaw slumps are amongst the most dynamic forms of thermokarst. These multi-decadal disturbances grow due to ablation of an ice-rich headwall, and their enlargement due to warming of the Arctic is mobilizing vast stores of previously frozen materials. Here, we investigate headwall profiles of seven ... : Geoderma, 433 ...