Effects of Arctic ozone on the stratospheric spring onset and its surface impact ...

Ozone in the Arctic stratosphere is subject to large interannual variability, driven by both chemical ozone depletion and dynamical variability. Anomalies in Arctic stratospheric ozone become particularly important in spring, when returning sunlight allows them to alter stratospheric temperatures vi...

Full description

Bibliographic Details
Main Authors: Friedel, Marina, Chiodo, Gabriel, Stenke, Andrea, Domeisen, Daniela, Peter, Thomas
Format: Article in Journal/Newspaper
Language:English
Published: ETH Zurich 2022
Subjects:
Online Access:https://dx.doi.org/10.3929/ethz-b-000584639
http://hdl.handle.net/20.500.11850/584639
Description
Summary:Ozone in the Arctic stratosphere is subject to large interannual variability, driven by both chemical ozone depletion and dynamical variability. Anomalies in Arctic stratospheric ozone become particularly important in spring, when returning sunlight allows them to alter stratospheric temperatures via shortwave heating, thus modifying atmospheric dynamics. At the same time, the stratospheric circulation undergoes a transition in spring with the final stratospheric warming (FSW), which marks the end of winter. A causal link between stratospheric ozone anomalies and FSWs is plausible and might increase the predictability of stratospheric and tropospheric responses on sub-seasonal to seasonal timescales. However, it remains to be fully understood how ozone influences the timing and evolution of the springtime vortex breakdown. Here, we contrast results from chemistry climate models with and without interactive ozone chemistry to quantify the impact of ozone anomalies on the timing of the FSW and its effects on ... : Atmospheric Chemistry and Physics, 22 (21) ...