Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system

A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequ...

Full description

Bibliographic Details
Main Authors: Ciais, Philippe, Dolman, A. Johannes, Bombelli, Antonio, Duren, Riley M., Peregon, Anna M., Rayner, Peter J., Miller, Charles E., Gobron, Nadine, Kinderman, G., Marland, Gregg, Gruber, Nicolas, Chevallier, Frédéric, Andres, Robert J., Balsamo, Gianpaolo, Bopp, Laurent, Bréon, François-Marie, Broquet, Grégoire, Dargaville, Roger, Battin, Tom J., Borges, Alberto Vieira, Bovensmann, Heinrich, Buchwitz, Michael, Butler, James H., Canadell, Josep G., Cook, Robert B., DeFries, Ruth, Engelen, Richard, Heinze, Christoph, Heimann, Martin, Held, Alex, Henry, Matieu, Law, Beverly E., Luyssaert, Sebastiaan, Miller, John Bharat, Moriyama, Takashi, Moulin, Christophe, Myneni, Ranga B., Nussli, C., Obersteiner, Michael, Ojima, Dennis, Pan, Y., Paris, Jean Daniel, Piao, Shilonog Long, Poulter, Benjamin, Plummer, Stephen, Quegan, Shaun, Raymond, Peter A., Reichstein, Markus, Rivier, Leonard, Sabine, Christopher L., Schimel, David S., Tarasova, Oksana A., Valentini, Riccardo, Wang, Rong, Van Der Werf, Guido R., Wickland, Diane, Williams, Mathew, Zehner, Claus
Format: Text
Language:English
Published: ETH Zurich 2014
Subjects:
Online Access:https://dx.doi.org/10.3929/ethz-b-000086766
http://hdl.handle.net/20.500.11850/86766
id ftdatacite:10.3929/ethz-b-000086766
record_format openpolar
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language English
description A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires transformational advances from the existing sparse, exploratory framework towards a dense, robust, and sustained system in all components: anthropogenic emissions, the atmosphere, the ocean, and the terrestrial biosphere. The paper is addressed to scientists, policymakers, and funding agencies who need to have a global picture of the current state of the (diverse) carbon observations. We identify the current state of carbon observations, and the needs and notional requirements for a global integrated carbon observation system that can be built in the next decade. A key conclusion is the substantial expansion of the ground-based observation networks required to reach the high spatial resolution for CO2 and CH4 fluxes, and for carbon stocks for addressing policy-relevant objectives, and attributing flux changes to underlying processes in each region. In order to establish flux and stock diagnostics over areas such as the southern oceans, tropical forests, and the Arctic, in situ observations will have to be complemented with remote-sensing measurements. Remote sensing offers the advantage of dense spatial coverage and frequent revisit. A key challenge is to bring remote-sensing measurements to a level of long-term consistency and accuracy so that they can be efficiently combined in models to reduce uncertainties, in synergy with ground-based data. Bringing tight observational constraints on fossil fuel and land use change emissions will be the biggest challenge for deployment of a policy-relevant integrated carbon observation system. This will require in situ and remotely sensed data at much higher resolution and density than currently achieved for natural fluxes, although over a small land area (cities, industrial sites, power plants), as well as the inclusion of fossil fuel CO2 proxy measurements such as radiocarbon in CO2 and carbon-fuel combustion tracers. Additionally, a policy-relevant carbon monitoring system should also provide mechanisms for reconciling regional top-down (atmosphere-based) and bottom-up (surface-based) flux estimates across the range of spatial and temporal scales relevant to mitigation policies. In addition, uncertainties for each observation data-stream should be assessed. The success of the system will rely on long-term commitments to monitoring, on improved international collaboration to fill gaps in the current observations, on sustained efforts to improve access to the different data streams and make databases interoperable, and on the calibration of each component of the system to agreed-upon international scales. : Biogeosciences, 11 (13) : ISSN:1726-4170 : ISSN:1726-4170
format Text
author Ciais, Philippe
Dolman, A. Johannes
Bombelli, Antonio
Duren, Riley M.
Peregon, Anna M.
Rayner, Peter J.
Miller, Charles E.
Gobron, Nadine
Kinderman, G.
Marland, Gregg
Gruber, Nicolas
Chevallier, Frédéric
Andres, Robert J.
Balsamo, Gianpaolo
Bopp, Laurent
Bréon, François-Marie
Broquet, Grégoire
Dargaville, Roger
Battin, Tom J.
Borges, Alberto Vieira
Bovensmann, Heinrich
Buchwitz, Michael
Butler, James H.
Canadell, Josep G.
Cook, Robert B.
DeFries, Ruth
Engelen, Richard
Heinze, Christoph
Heinze, Christoph
Heimann, Martin
Held, Alex
Henry, Matieu
Law, Beverly E.
Luyssaert, Sebastiaan
Miller, John Bharat
Moriyama, Takashi
Moulin, Christophe
Myneni, Ranga B.
Nussli, C.
Obersteiner, Michael
Ojima, Dennis
Pan, Y.
Paris, Jean Daniel
Piao, Shilonog Long
Poulter, Benjamin
Plummer, Stephen
Quegan, Shaun
Raymond, Peter A.
Reichstein, Markus
Rivier, Leonard
Sabine, Christopher L.
Schimel, David S.
Tarasova, Oksana A.
Valentini, Riccardo
Wang, Rong
Van Der Werf, Guido R.
Wickland, Diane
Williams, Mathew
Zehner, Claus
spellingShingle Ciais, Philippe
Dolman, A. Johannes
Bombelli, Antonio
Duren, Riley M.
Peregon, Anna M.
Rayner, Peter J.
Miller, Charles E.
Gobron, Nadine
Kinderman, G.
Marland, Gregg
Gruber, Nicolas
Chevallier, Frédéric
Andres, Robert J.
Balsamo, Gianpaolo
Bopp, Laurent
Bréon, François-Marie
Broquet, Grégoire
Dargaville, Roger
Battin, Tom J.
Borges, Alberto Vieira
Bovensmann, Heinrich
Buchwitz, Michael
Butler, James H.
Canadell, Josep G.
Cook, Robert B.
DeFries, Ruth
Engelen, Richard
Heinze, Christoph
Heinze, Christoph
Heimann, Martin
Held, Alex
Henry, Matieu
Law, Beverly E.
Luyssaert, Sebastiaan
Miller, John Bharat
Moriyama, Takashi
Moulin, Christophe
Myneni, Ranga B.
Nussli, C.
Obersteiner, Michael
Ojima, Dennis
Pan, Y.
Paris, Jean Daniel
Piao, Shilonog Long
Poulter, Benjamin
Plummer, Stephen
Quegan, Shaun
Raymond, Peter A.
Reichstein, Markus
Rivier, Leonard
Sabine, Christopher L.
Schimel, David S.
Tarasova, Oksana A.
Valentini, Riccardo
Wang, Rong
Van Der Werf, Guido R.
Wickland, Diane
Williams, Mathew
Zehner, Claus
Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system
author_facet Ciais, Philippe
Dolman, A. Johannes
Bombelli, Antonio
Duren, Riley M.
Peregon, Anna M.
Rayner, Peter J.
Miller, Charles E.
Gobron, Nadine
Kinderman, G.
Marland, Gregg
Gruber, Nicolas
Chevallier, Frédéric
Andres, Robert J.
Balsamo, Gianpaolo
Bopp, Laurent
Bréon, François-Marie
Broquet, Grégoire
Dargaville, Roger
Battin, Tom J.
Borges, Alberto Vieira
Bovensmann, Heinrich
Buchwitz, Michael
Butler, James H.
Canadell, Josep G.
Cook, Robert B.
DeFries, Ruth
Engelen, Richard
Heinze, Christoph
Heinze, Christoph
Heimann, Martin
Held, Alex
Henry, Matieu
Law, Beverly E.
Luyssaert, Sebastiaan
Miller, John Bharat
Moriyama, Takashi
Moulin, Christophe
Myneni, Ranga B.
Nussli, C.
Obersteiner, Michael
Ojima, Dennis
Pan, Y.
Paris, Jean Daniel
Piao, Shilonog Long
Poulter, Benjamin
Plummer, Stephen
Quegan, Shaun
Raymond, Peter A.
Reichstein, Markus
Rivier, Leonard
Sabine, Christopher L.
Schimel, David S.
Tarasova, Oksana A.
Valentini, Riccardo
Wang, Rong
Van Der Werf, Guido R.
Wickland, Diane
Williams, Mathew
Zehner, Claus
author_sort Ciais, Philippe
title Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system
title_short Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system
title_full Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system
title_fullStr Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system
title_full_unstemmed Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system
title_sort current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system
publisher ETH Zurich
publishDate 2014
url https://dx.doi.org/10.3929/ethz-b-000086766
http://hdl.handle.net/20.500.11850/86766
geographic Arctic
geographic_facet Arctic
genre Arctic
genre_facet Arctic
op_rights info:eu-repo/semantics/openAccess
Creative Commons Attribution 3.0 Unported
https://creativecommons.org/licenses/by/3.0/legalcode
cc-by-3.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.3929/ethz-b-000086766
_version_ 1766349748451672064
spelling ftdatacite:10.3929/ethz-b-000086766 2023-05-15T15:19:33+02:00 Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system Ciais, Philippe Dolman, A. Johannes Bombelli, Antonio Duren, Riley M. Peregon, Anna M. Rayner, Peter J. Miller, Charles E. Gobron, Nadine Kinderman, G. Marland, Gregg Gruber, Nicolas Chevallier, Frédéric Andres, Robert J. Balsamo, Gianpaolo Bopp, Laurent Bréon, François-Marie Broquet, Grégoire Dargaville, Roger Battin, Tom J. Borges, Alberto Vieira Bovensmann, Heinrich Buchwitz, Michael Butler, James H. Canadell, Josep G. Cook, Robert B. DeFries, Ruth Engelen, Richard Heinze, Christoph Heinze, Christoph Heimann, Martin Held, Alex Henry, Matieu Law, Beverly E. Luyssaert, Sebastiaan Miller, John Bharat Moriyama, Takashi Moulin, Christophe Myneni, Ranga B. Nussli, C. Obersteiner, Michael Ojima, Dennis Pan, Y. Paris, Jean Daniel Piao, Shilonog Long Poulter, Benjamin Plummer, Stephen Quegan, Shaun Raymond, Peter A. Reichstein, Markus Rivier, Leonard Sabine, Christopher L. Schimel, David S. Tarasova, Oksana A. Valentini, Riccardo Wang, Rong Van Der Werf, Guido R. Wickland, Diane Williams, Mathew Zehner, Claus 2014 application/pdf https://dx.doi.org/10.3929/ethz-b-000086766 http://hdl.handle.net/20.500.11850/86766 en eng ETH Zurich info:eu-repo/semantics/openAccess Creative Commons Attribution 3.0 Unported https://creativecommons.org/licenses/by/3.0/legalcode cc-by-3.0 CC-BY Text article-journal Journal Article ScholarlyArticle 2014 ftdatacite https://doi.org/10.3929/ethz-b-000086766 2021-11-05T12:55:41Z A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires transformational advances from the existing sparse, exploratory framework towards a dense, robust, and sustained system in all components: anthropogenic emissions, the atmosphere, the ocean, and the terrestrial biosphere. The paper is addressed to scientists, policymakers, and funding agencies who need to have a global picture of the current state of the (diverse) carbon observations. We identify the current state of carbon observations, and the needs and notional requirements for a global integrated carbon observation system that can be built in the next decade. A key conclusion is the substantial expansion of the ground-based observation networks required to reach the high spatial resolution for CO2 and CH4 fluxes, and for carbon stocks for addressing policy-relevant objectives, and attributing flux changes to underlying processes in each region. In order to establish flux and stock diagnostics over areas such as the southern oceans, tropical forests, and the Arctic, in situ observations will have to be complemented with remote-sensing measurements. Remote sensing offers the advantage of dense spatial coverage and frequent revisit. A key challenge is to bring remote-sensing measurements to a level of long-term consistency and accuracy so that they can be efficiently combined in models to reduce uncertainties, in synergy with ground-based data. Bringing tight observational constraints on fossil fuel and land use change emissions will be the biggest challenge for deployment of a policy-relevant integrated carbon observation system. This will require in situ and remotely sensed data at much higher resolution and density than currently achieved for natural fluxes, although over a small land area (cities, industrial sites, power plants), as well as the inclusion of fossil fuel CO2 proxy measurements such as radiocarbon in CO2 and carbon-fuel combustion tracers. Additionally, a policy-relevant carbon monitoring system should also provide mechanisms for reconciling regional top-down (atmosphere-based) and bottom-up (surface-based) flux estimates across the range of spatial and temporal scales relevant to mitigation policies. In addition, uncertainties for each observation data-stream should be assessed. The success of the system will rely on long-term commitments to monitoring, on improved international collaboration to fill gaps in the current observations, on sustained efforts to improve access to the different data streams and make databases interoperable, and on the calibration of each component of the system to agreed-upon international scales. : Biogeosciences, 11 (13) : ISSN:1726-4170 : ISSN:1726-4170 Text Arctic DataCite Metadata Store (German National Library of Science and Technology) Arctic