Antarctic sub-shelf melt rates via PICO

Ocean-induced melting below ice shelves is one of the dominant drivers for mass loss from the Antarctic Ice Sheet at present. An appropriate representation of sub-shelf melt rates is therefore essential for model simulations of marine-based ice sheet evolution. Continental-scale ice sheet models oft...

Full description

Bibliographic Details
Main Authors: Reese, Ronja, Albrecht, Torsten, Mengel, Matthias, Asay-Davis, Xylar, Winkelmann, Ricarda
Format: Article in Journal/Newspaper
Language:unknown
Published: München : European Geopyhsical Union 2018
Subjects:
550
Online Access:https://dx.doi.org/10.34657/804
https://oa.tib.eu/renate/handle/123456789/675
id ftdatacite:10.34657/804
record_format openpolar
spelling ftdatacite:10.34657/804 2023-05-15T13:24:15+02:00 Antarctic sub-shelf melt rates via PICO Reese, Ronja Albrecht, Torsten Mengel, Matthias Asay-Davis, Xylar Winkelmann, Ricarda 2018 application/pdf https://dx.doi.org/10.34657/804 https://oa.tib.eu/renate/handle/123456789/675 unknown München : European Geopyhsical Union Creative Commons Attribution 3.0 Unported CC BY 3.0 Unported https://creativecommons.org/licenses/by/3.0/legalcode cc-by-3.0 CC-BY boundary layer grounding line ice sheet ice shelf ice-ocean interaction iceberg calving oceanic circulation two-dimensional modeling 550 CreativeWork article 2018 ftdatacite https://doi.org/10.34657/804 2022-03-10T12:43:22Z Ocean-induced melting below ice shelves is one of the dominant drivers for mass loss from the Antarctic Ice Sheet at present. An appropriate representation of sub-shelf melt rates is therefore essential for model simulations of marine-based ice sheet evolution. Continental-scale ice sheet models often rely on simple melt-parameterizations, in particular for long-term simulations, when fully coupled ice–ocean interaction becomes computationally too expensive. Such parameterizations can account for the influence of the local depth of the ice-shelf draft or its slope on melting. However, they do not capture the effect of ocean circulation underneath the ice shelf. Here we present the Potsdam Ice-shelf Cavity mOdel (PICO), which simulates the vertical overturning circulation in ice-shelf cavities and thus enables the computation of sub-shelf melt rates consistent with this circulation. PICO is based on an ocean box model that coarsely resolves ice shelf cavities and uses a boundary layer melt formulation. We implement it as a module of the Parallel Ice Sheet Model (PISM) and evaluate its performance under present-day conditions of the Southern Ocean. We identify a set of parameters that yield two-dimensional melt rate fields that qualitatively reproduce the typical pattern of comparably high melting near the grounding line and lower melting or refreezing towards the calving front. PICO captures the wide range of melt rates observed for Antarctic ice shelves, with an average of about 0.1 m a−1 for cold sub-shelf cavities, for example, underneath Ross or Ronne ice shelves, to 16 m a−1 for warm cavities such as in the Amundsen Sea region. This makes PICO a computationally feasible and more physical alternative to melt parameterizations purely based on ice draft geometry. Article in Journal/Newspaper Amundsen Sea Antarc* Antarctic Ice Sheet Ice Shelf Ice Shelves Iceberg* Southern Ocean DataCite Metadata Store (German National Library of Science and Technology) Antarctic Southern Ocean The Antarctic Amundsen Sea
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language unknown
topic boundary layer
grounding line
ice sheet
ice shelf
ice-ocean interaction
iceberg calving
oceanic circulation
two-dimensional modeling
550
spellingShingle boundary layer
grounding line
ice sheet
ice shelf
ice-ocean interaction
iceberg calving
oceanic circulation
two-dimensional modeling
550
Reese, Ronja
Albrecht, Torsten
Mengel, Matthias
Asay-Davis, Xylar
Winkelmann, Ricarda
Antarctic sub-shelf melt rates via PICO
topic_facet boundary layer
grounding line
ice sheet
ice shelf
ice-ocean interaction
iceberg calving
oceanic circulation
two-dimensional modeling
550
description Ocean-induced melting below ice shelves is one of the dominant drivers for mass loss from the Antarctic Ice Sheet at present. An appropriate representation of sub-shelf melt rates is therefore essential for model simulations of marine-based ice sheet evolution. Continental-scale ice sheet models often rely on simple melt-parameterizations, in particular for long-term simulations, when fully coupled ice–ocean interaction becomes computationally too expensive. Such parameterizations can account for the influence of the local depth of the ice-shelf draft or its slope on melting. However, they do not capture the effect of ocean circulation underneath the ice shelf. Here we present the Potsdam Ice-shelf Cavity mOdel (PICO), which simulates the vertical overturning circulation in ice-shelf cavities and thus enables the computation of sub-shelf melt rates consistent with this circulation. PICO is based on an ocean box model that coarsely resolves ice shelf cavities and uses a boundary layer melt formulation. We implement it as a module of the Parallel Ice Sheet Model (PISM) and evaluate its performance under present-day conditions of the Southern Ocean. We identify a set of parameters that yield two-dimensional melt rate fields that qualitatively reproduce the typical pattern of comparably high melting near the grounding line and lower melting or refreezing towards the calving front. PICO captures the wide range of melt rates observed for Antarctic ice shelves, with an average of about 0.1 m a−1 for cold sub-shelf cavities, for example, underneath Ross or Ronne ice shelves, to 16 m a−1 for warm cavities such as in the Amundsen Sea region. This makes PICO a computationally feasible and more physical alternative to melt parameterizations purely based on ice draft geometry.
format Article in Journal/Newspaper
author Reese, Ronja
Albrecht, Torsten
Mengel, Matthias
Asay-Davis, Xylar
Winkelmann, Ricarda
author_facet Reese, Ronja
Albrecht, Torsten
Mengel, Matthias
Asay-Davis, Xylar
Winkelmann, Ricarda
author_sort Reese, Ronja
title Antarctic sub-shelf melt rates via PICO
title_short Antarctic sub-shelf melt rates via PICO
title_full Antarctic sub-shelf melt rates via PICO
title_fullStr Antarctic sub-shelf melt rates via PICO
title_full_unstemmed Antarctic sub-shelf melt rates via PICO
title_sort antarctic sub-shelf melt rates via pico
publisher München : European Geopyhsical Union
publishDate 2018
url https://dx.doi.org/10.34657/804
https://oa.tib.eu/renate/handle/123456789/675
geographic Antarctic
Southern Ocean
The Antarctic
Amundsen Sea
geographic_facet Antarctic
Southern Ocean
The Antarctic
Amundsen Sea
genre Amundsen Sea
Antarc*
Antarctic
Ice Sheet
Ice Shelf
Ice Shelves
Iceberg*
Southern Ocean
genre_facet Amundsen Sea
Antarc*
Antarctic
Ice Sheet
Ice Shelf
Ice Shelves
Iceberg*
Southern Ocean
op_rights Creative Commons Attribution 3.0 Unported
CC BY 3.0 Unported
https://creativecommons.org/licenses/by/3.0/legalcode
cc-by-3.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.34657/804
_version_ 1766378269072949248