Basin stability and limit cycles in a conceptual model for climate tipping cascades
Tipping elements in the climate system are large-scale subregions of the Earth that might possess threshold behavior under global warming with large potential impacts on human societies. Here, we study a subset of five tipping elements and their interactions in a conceptual and easily extendable fra...
Main Authors: | , , , , |
---|---|
Format: | Text |
Language: | English |
Published: |
[London] : IOP
2020
|
Subjects: | |
Online Access: | https://dx.doi.org/10.34657/7512 https://oa.tib.eu/renate/handle/123456789/8474 |
id |
ftdatacite:10.34657/7512 |
---|---|
record_format |
openpolar |
spelling |
ftdatacite:10.34657/7512 2023-05-15T13:46:46+02:00 Basin stability and limit cycles in a conceptual model for climate tipping cascades Wunderling, Nico Gelbrecht, Maximilian Winkelmann, Ricarda Kurths, Jürgen Donges, Jonathan F. 2020 https://dx.doi.org/10.34657/7512 https://oa.tib.eu/renate/handle/123456789/8474 en eng [London] : IOP Creative Commons Attribution 4.0 International CC BY 4.0 Unported https://creativecommons.org/licenses/by/4.0/legalcode cc-by-4.0 CC-BY Basin stability Bifurcation Climate tipping elements Complex systems Nonlinear dynamics Nonlinear processes in the earth 530 article-journal ScholarlyArticle article Text 2020 ftdatacite https://doi.org/10.34657/7512 2022-04-01T18:48:18Z Tipping elements in the climate system are large-scale subregions of the Earth that might possess threshold behavior under global warming with large potential impacts on human societies. Here, we study a subset of five tipping elements and their interactions in a conceptual and easily extendable framework: the Greenland Ice Sheets (GIS) and West Antarctic Ice Sheets, the Atlantic meridional overturning circulation (AMOC), the El–Niño Southern Oscillation and the Amazon rainforest. In this nonlinear and multistable system, we perform a basin stability analysis to detect its stable states and their associated Earth system resilience. By combining these two methodologies with a large-scale Monte Carlo approach, we are able to propagate the many uncertainties associated with the critical temperature thresholds and the interaction strengths of the tipping elements. Using this approach, we perform a system-wide and comprehensive robustness analysis with more than 3.5 billion ensemble members. Further, we investigate dynamic regimes where some of the states lose stability and oscillations appear using a newly developed basin bifurcation analysis methodology. Our results reveal that the state of four or five tipped elements has the largest basin volume for large levels of global warming beyond 4 °C above pre-industrial climate conditions, representing a highly undesired state where a majority of the tipping elements reside in the transitioned regime. For lower levels of warming, states including disintegrated ice sheets on west Antarctica and Greenland have higher basin volume than other state configurations. Therefore in our model, we find that the large ice sheets are of particular importance for Earth system resilience. We also detect the emergence of limit cycles for 0.6% of all ensemble members at rare parameter combinations. Such limit cycle oscillations mainly occur between the GIS and AMOC (86%), due to their negative feedback coupling. These limit cycles point to possibly dangerous internal modes of variability in the climate system that could have played a role in paleoclimatic dynamics such as those unfolding during the Pleistocene ice age cycles. Text Antarc* Antarctic Antarctica Greenland West Antarctica DataCite Metadata Store (German National Library of Science and Technology) Antarctic Greenland West Antarctica |
institution |
Open Polar |
collection |
DataCite Metadata Store (German National Library of Science and Technology) |
op_collection_id |
ftdatacite |
language |
English |
topic |
Basin stability Bifurcation Climate tipping elements Complex systems Nonlinear dynamics Nonlinear processes in the earth 530 |
spellingShingle |
Basin stability Bifurcation Climate tipping elements Complex systems Nonlinear dynamics Nonlinear processes in the earth 530 Wunderling, Nico Gelbrecht, Maximilian Winkelmann, Ricarda Kurths, Jürgen Donges, Jonathan F. Basin stability and limit cycles in a conceptual model for climate tipping cascades |
topic_facet |
Basin stability Bifurcation Climate tipping elements Complex systems Nonlinear dynamics Nonlinear processes in the earth 530 |
description |
Tipping elements in the climate system are large-scale subregions of the Earth that might possess threshold behavior under global warming with large potential impacts on human societies. Here, we study a subset of five tipping elements and their interactions in a conceptual and easily extendable framework: the Greenland Ice Sheets (GIS) and West Antarctic Ice Sheets, the Atlantic meridional overturning circulation (AMOC), the El–Niño Southern Oscillation and the Amazon rainforest. In this nonlinear and multistable system, we perform a basin stability analysis to detect its stable states and their associated Earth system resilience. By combining these two methodologies with a large-scale Monte Carlo approach, we are able to propagate the many uncertainties associated with the critical temperature thresholds and the interaction strengths of the tipping elements. Using this approach, we perform a system-wide and comprehensive robustness analysis with more than 3.5 billion ensemble members. Further, we investigate dynamic regimes where some of the states lose stability and oscillations appear using a newly developed basin bifurcation analysis methodology. Our results reveal that the state of four or five tipped elements has the largest basin volume for large levels of global warming beyond 4 °C above pre-industrial climate conditions, representing a highly undesired state where a majority of the tipping elements reside in the transitioned regime. For lower levels of warming, states including disintegrated ice sheets on west Antarctica and Greenland have higher basin volume than other state configurations. Therefore in our model, we find that the large ice sheets are of particular importance for Earth system resilience. We also detect the emergence of limit cycles for 0.6% of all ensemble members at rare parameter combinations. Such limit cycle oscillations mainly occur between the GIS and AMOC (86%), due to their negative feedback coupling. These limit cycles point to possibly dangerous internal modes of variability in the climate system that could have played a role in paleoclimatic dynamics such as those unfolding during the Pleistocene ice age cycles. |
format |
Text |
author |
Wunderling, Nico Gelbrecht, Maximilian Winkelmann, Ricarda Kurths, Jürgen Donges, Jonathan F. |
author_facet |
Wunderling, Nico Gelbrecht, Maximilian Winkelmann, Ricarda Kurths, Jürgen Donges, Jonathan F. |
author_sort |
Wunderling, Nico |
title |
Basin stability and limit cycles in a conceptual model for climate tipping cascades |
title_short |
Basin stability and limit cycles in a conceptual model for climate tipping cascades |
title_full |
Basin stability and limit cycles in a conceptual model for climate tipping cascades |
title_fullStr |
Basin stability and limit cycles in a conceptual model for climate tipping cascades |
title_full_unstemmed |
Basin stability and limit cycles in a conceptual model for climate tipping cascades |
title_sort |
basin stability and limit cycles in a conceptual model for climate tipping cascades |
publisher |
[London] : IOP |
publishDate |
2020 |
url |
https://dx.doi.org/10.34657/7512 https://oa.tib.eu/renate/handle/123456789/8474 |
geographic |
Antarctic Greenland West Antarctica |
geographic_facet |
Antarctic Greenland West Antarctica |
genre |
Antarc* Antarctic Antarctica Greenland West Antarctica |
genre_facet |
Antarc* Antarctic Antarctica Greenland West Antarctica |
op_rights |
Creative Commons Attribution 4.0 International CC BY 4.0 Unported https://creativecommons.org/licenses/by/4.0/legalcode cc-by-4.0 |
op_rightsnorm |
CC-BY |
op_doi |
https://doi.org/10.34657/7512 |
_version_ |
1766245183133843456 |