Contributions of transported Prudhoe Bay oil field emissions to the aerosol population in Utqiaġvik, Alaska ...

Loss of sea ice is opening the Arctic to increasing development involving oil and gas extraction and shipping. Given the significant impacts of absorbing aerosol and secondary aerosol precursors emitted within the rapidly warming Arctic region, it is necessary to characterize local anthropogenic aer...

Full description

Bibliographic Details
Main Authors: Gunsch, Matthew J., Kirpes, Rachel M., Kolesar, Katheryn R., Barrett, Tate E., China, Swarup, Sheesley, Rebecca J., Laskin, Alexander, Wiedensohler, Alfred, Tuch, Thomas, Pratt, Kerri A.
Format: Article in Journal/Newspaper
Language:English
Published: Katlenburg-Lindau : EGU 2017
Subjects:
550
Online Access:https://dx.doi.org/10.34657/10960
https://oa.tib.eu/renate/handle/123456789/11927
Description
Summary:Loss of sea ice is opening the Arctic to increasing development involving oil and gas extraction and shipping. Given the significant impacts of absorbing aerosol and secondary aerosol precursors emitted within the rapidly warming Arctic region, it is necessary to characterize local anthropogenic aerosol sources and compare to natural conditions. From August to September 2015 in Utqiaġvik (Barrow), AK, the chemical composition of individual atmospheric particles was measured by computer-controlled scanning electron microscopy with energy-dispersive X-ray spectroscopy (0.13-4 μm projected area diameter) and real-time single-particle mass spectrometry (0.2-1.5 μm vacuum aerodynamic diameter). During periods influenced by the Arctic Ocean (70 % of the study), our results show that fresh sea spray aerosol contributed ∼ 20 %, by number, of particles between 0.13 and 0.4 μm, 40-70 % between 0.4 and 1 μm, and 80-100 % between 1 and 4 μm particles. In contrast, for periods influenced by emissions from Prudhoe Bay (10 ...